Having made their conquest, the brothers took the machine back to camp, and, as they thought, placed it in safety. Talking with the little group of spectators about the flights, they forgot about the machine, and then a sudden gust of wind struck it. Seeing that it was being overturned, all made a rush toward it to save it, and Mr Daniels, a man of large proportions, was in some way lifted off his feet, falling between the planes. The machine overturned fully, and Daniels was shaken like a die in a cup as the wind rolled the machine over and over—he came out at the end of his experience with a series of bad bruises, and no more, but the damage done to the machine by the accident was sufficient to render it useless for further experiment that season.
A new machine, stronger and heavier, was constructed by the brothers, and in the spring of 1904 they began experiments again at Simms Station, eight miles to the east of Dayton, their home town. Press representatives were invited for the first trial, and about a dozen came—the whole gathering did not number more than fifty people. ‘When preparations had been concluded,’ Wilbur Wright wrote of this trial, ‘a wind of only three or four miles an hour was blowing—insufficient for starting on so short a track—but since many had come a long way to see the machine in action, an attempt was made. To add to the other difficulty, the engine refused to work properly. The machine, after running the length of the track, slid off the end without rising into the air at all. Several of the newspaper men returned next day but were again disappointed. The engine performed badly, and after a glide of only sixty feet the machine again came to the ground. Further trial was postponed till the motor could be put in better running condition. The reporters had now, no doubt, lost confidence in the machine, though their reports, in kindness, concealed it. Later, when they heard that we were making flights of several minutes’ duration, knowing that longer flights had been made with airships, and not knowing any essential difference between airships and flying machines, they were but little interested.
‘We had not been flying long in 1904 before we found that the problem of equilibrium had not as yet been entirely solved. Sometimes, in making a circle, the machine would turn over sidewise despite anything the operator could do, although, under the same conditions in ordinary straight flight it could have been righted in an instant. In one flight, in 1905, while circling round a honey locust-tree at a height of about 50 feet, the machine suddenly began to turn up on one wing, and took a course toward the tree. The operator, not relishing the idea of landing in a thorn tree, attempted to reach the ground. The left wing, however, struck the tree at a height of 10 or 12 feet from the ground and carried away several branches; but the flight, which had already covered a distance of six miles, was continued to the starting point.
‘The causes of these troubles—too technical for explanation here—were not entirely overcome till the end of September, 1905. The flights then rapidly increased in length, till experiments were discontinued after October 5, on account of the number of people attracted to the field. Although made on a ground open on every side, and bordered on two sides by much-travelled thoroughfares, with electric cars passing every hour, and seen by all the people living in the neighbourhood for miles around, and by several hundred others, yet these flights have been made by some newspapers the subject of a great “mystery.”’
Viewing their work from the financial side, the two brothers incurred but little expense in the earlier gliding experiments, and, indeed, viewed these only as recreation, limiting their expenditure to that which two men might spend on any hobby. When they had once achieved successful power-driven flight, they saw the possibilities of their work, and abandoned such other business as had engaged their energies, sinking all their capital in the development of a practical flying machine. Having, in 1905, improved their designs to such an extent that they could consider their machine a practical aeroplane, they devoted the years 1906 and 1907 to business negotiations and to the construction of new machines, resuming flying experiments in May of 1908 in order to test the ability of their machine to meet the requirements of a contract they had made with the United States Government, which required an aeroplane capable of carrying two men, together with sufficient fuel supplies for a flight of 125 miles at 40 miles per hour. Practically similar to the machine used in the experiments of 1905, the contract aeroplane was fitted with a larger motor, and provision was made for seating a passenger and also for allowing of the operator assuming a sitting position, instead of lying prone.
Before leaving the work of the brothers to consider contemporary events, it may be noted that they claimed—with justice—that they were first to construct wings adjustable to different angles of incidence on the right and left side in order to control the balance of an aeroplane; the first to attain lateral balance by adjusting wing-tips to respectively different angles of incidence on the right and left sides, and the first to use a vertical vane in combination with wing-tips, adjustable to respectively different angles of incidence, in balancing and steering an aeroplane. They were first, too, to use a movable vertical tail, in combination with wings adjustable to different angles of incidence, in controlling the balance and direction of an aeroplane.[5]
A certain Henry M. Weaver, who went to see the work of the brothers, writing in a letter which was subsequently read before the Aero Club de France, records that he had a talk in 1905 with the farmer who rented the field in which the Wrights made their flights. ‘On October 5th (1905) he was cutting corn in the next field east, which is higher ground. When he noticed the aeroplane had started on its flight he remarked to his helper: “Well, the boys are at it again,” and kept on cutting corn, at the same time keeping an eye on the great white form rushing about its course. “I just kept on shocking corn,” he continued, “until I got down to the fence, and the durned thing was still going round. I thought it would never stop.”’
He was right. The brothers started it, and it will never stop.
Mr Weaver also notes briefly the construction of the 1905 Wright flier. ‘The frame was made of larch wood—from tip to tip of the wings the dimension was 40 feet. The gasoline motor—a special construction made by them—much the same, though, as the motor on the Pope-Toledo automobile—was of from 12 to 15 horse-power. The motor weighed 240 lbs. The frame was covered with ordinary muslin of good quality. No attempt was made to lighten the machine; they simply built it strong enough to stand the shocks. The structure stood on skids or runners, like a sleigh. These held the frame high enough from the ground in alighting to protect the blades of the propeller. Complete with motor, the machine weighed 925 lbs.’