These considerations tended to turn the minds of those interested in aerostation to consideration of the hydrogen balloon evolved by Professor Charles. Certain improvements had been made by Charles since his first construction; he employed rubber-coated silk in the construction of a balloon of 30 feet diameter, and provided a net for distributing the pressure uniformly over the surface of the envelope; this net covered the top half of the balloon, and from its lower edge dependent ropes hung to join on a wooden ring, from which the car of the balloon was suspended—apart from the extension of the net so as to cover in the whole of the envelope, the spherical balloon of to-day is virtually identical with that of Charles in its method of construction. He introduced the valve at the top of the balloon, by which escape of gas could be controlled, operating his valve by means of ropes which depended to the car of the balloon, and he also inserted a tube, of about 7 inches diameter, at the bottom of the balloon, not only for purposes of inflation, but also to provide a means of escape for gas in case of expansion due to atmospheric conditions.
Sulphuric acid and iron filings were used by Charles for filling his balloon, which required three days and three nights for the generation of its 14,000 cubic feet of hydrogen gas. The inflation was completed on December 1st, 1783, and the fittings carried included a barometer and a grapnel form of anchor. In addition to this, Charles provided the first ‘ballon sondé’ in the form of a small pilot balloon which he handed to Mongolfier to launch before his own ascent, in order to determine the direction and velocity of the wind. It was a graceful compliment to his rival, and indicated that, although they were both working to the one end, their rivalry was not a matter of bitterness.
Ascending on December 1st, 1783, Charles took with him one of the brothers Robert, and with him made the record journey up to that date, covering a period of three and three-quarter hours, in which time they journeyed some forty miles. Robert then landed, and Charles ascended again alone, reaching such a height as to feel the effects of the rarefaction of the air, this very largely due to the rapidity of his ascent. Opening the valve at the top of the balloon, he descended thirty-five minutes after leaving Robert behind, and came to earth a few miles from the point of the first descent. His discomfort over the rapid ascent was mainly due to the fact that, when Robert landed, he forgot to compensate for the reduction of weight by taking in further ballast, but the ascent proved the value of the tube at the bottom of the balloon envelope, for the gas escaped very rapidly in that second ascent, and, but for the tube, the balloon must inevitably have burst in the air, with fatal results for Charles.
As in the case of aeroplane flight, as soon as the balloon was proved practicable the flight across the English Channel was talked of, and Rozier, who had the honour of the first flight, announced his intention of being first to cross. But Blanchard, who had an idea for a ‘flying car,’ anticipated him, and made a start from Dover on January 7th, 1785, taking with him an American doctor named Jeffries. Blanchard fitted out his craft for the journey very thoroughly, taking provisions, oars, and even wings, for propulsion in case of need. He took so much, in fact, that as soon as the balloon lifted clear of the ground the whole of the ballast had to be jettisoned, lest the balloon should drop into the sea. Half-way across the Channel the sinking of the balloon warned Blanchard that he had to part with more than ballast to accomplish the journey, and all the equipment went, together with certain books and papers that were on board the car. The balloon looked perilously like collapsing, and both Blanchard and Jeffries began to undress in order further to lighten their craft—Jeffries even proposed a heroic dive to save the situation, but suddenly the balloon rose sufficiently to clear the French coast, and the two voyagers landed at a point near Calais in the Forest of Guines, where a marble column was subsequently erected to commemorate the great feat.
Rozier, although not first across, determined to be second, and for that purpose he constructed a balloon which was to owe its buoyancy to a combination of the hydrogen and hot air principles. There was a spherical hydrogen balloon above, and beneath it a cylindrical container which could be filled with hot air, thus compensating for the leakage of gas from the hydrogen portion of the balloon—regulating the heat of his fire, he thought, would give him perfect control in the matter of ascending and descending.
On July 16th, 1785, a favourable breeze gave Rozier his opportunity of starting from the French coast, and with a passenger aboard he cast off in his balloon, which he had named the ‘Aero-Mongolfiere.’ There was a rapid rise at first, and then for a time the balloon remained stationary over the land, after which a cloud suddenly appeared round the balloon, denoting that an explosion had taken place. Both Rozier and his companion were killed in the fall, so that he, first to leave the earth by balloon, was also first victim to the art of aerostation.
There followed, naturally, a lull in the enthusiasm with which ballooning had been taken up, so far as France was concerned. In Italy, however, Count Zambeccari took up hot-air ballooning, using a spirit lamp to give him buoyancy, and on the first occasion when the balloon car was set on fire Zambeccari let down his passenger by means of the anchor rope, and managed to extinguish the fire while in the air. This reduced the buoyancy of the balloon to such an extent that it fell into the Adriatic and was totally wrecked, Zambeccari being rescued by fishermen. He continued to experiment up to 1812, when he attempted to ascend at Bologna; the spirit in his lamp was upset by the collision of the car with a tree, and the car was again set on fire. Zambeccari jumped from the car when it was over fifty feet above level ground, and was killed. With him the Rozier type of balloon, combining the hydrogen and hot air principles, disappeared; the combination was obviously too dangerous to be practical.
The brothers Robert were first to note how the heat of the sun acted on the gases within a balloon envelope, and it has since been ascertained that sun rays will heat the gas in a balloon to as much as 80 degrees Fahrenheit greater temperature than the surrounding atmosphere; hydrogen, being less affected by change of temperature than coal gas, is the most suitable filling element, and coal gas comes next as the medium of buoyancy. This for the free and non-navigable balloon, though for the airship, carrying means of combustion, and in military work liable to ignition by explosives, the gas helium seems likely to replace hydrogen, being non-combustible.
In spite of the development of the dirigible airship, there remains work for the free, spherical type of balloon in the scientific field. Blanchard’s companion on the first Channel crossing by balloon, Dr Jeffries, was the first balloonist to ascend for purely scientific purposes; as early as 1784 he made an ascent to a height of 9,000 feet, and observed a fall in temperature of from 51 degrees—at the level of London, where he began his ascent—to 29 degrees at the maximum height reached. He took up an electrometer, a hydrometer, a compass, a thermometer, and a Toricelli barometer, together with bottles of water, in order to collect samples of the air at different heights. In 1785 he made a second ascent, when trigonometrical observations of the height of the balloon were made from the French coast, giving an altitude of 4,800 feet.
The matter was taken up on its scientific side very early in America, experiments in Philadelphia being almost simultaneous with those of the Mongolfiers in France. The flight of Rozier and d’Arlandes inspired two members of the Philadelphia Philosophical Academy to construct a balloon or series of balloons of their own design; they made a machine which consisted of no less than 47 small hydrogen balloons attached to a wicker car, and made certain preliminary trials, using animals as passengers. This was followed by a captive ascent with a man as passenger, and eventually by the first free ascent in America, which was undertaken by one James Wilcox, a carpenter, on December 28th 1783. Wilcox, fearful of falling into a river, attempted to regulate his landing by cutting slits in some of the supporting balloons, which was the method adopted for regulating ascent or descent in this machine. He first cut three, and then, finding that the effect produced was not sufficient, cut three more, and then another five—eleven out of the forty-seven. The result was so swift a descent that he dislocated his wrist on landing.