An even torque, or great uniformity of rotation, is transmitted to the air-screw by these engines, while the design also permits of such good balance of the engine itself that vibration is practically eliminated. The angle between the two rows of cylinders is varied according to the number of cylinders, in order to give working impulses at equal angles of rotation and thus provide even torque; this angle is determined by dividing the number of degrees in a circle by the number of cylinders in either row of the engine. In an eight-cylindered Vee type engine, the angle between the cylinders is 90 degrees; if it is a twelve-cylindered engine, the angle drops to 60 degrees.

One of the earliest of the British-built Vee type engines was an eight-cylinder 50 horse-power by the Wolseley Company, constructed in 1908 with a cylinder bore of 3·75 inches and stroke of 5 inches, running at a normal speed of 1,350 revolutions per minute. With this engine, a gearing was introduced to enable the propeller to run at a lower speed than that of the engine, the slight loss of efficiency caused by the friction of the gearing being compensated by the slower speed of the air-screw, which had higher efficiency than would have been the case if it had been run at the engine speed. The ratio of the gearing—that is, the speed of the air-screw relatively to that of the engine, could be chosen so as to suit exactly the requirements of the air-screw, and the gearing itself, on this engine, was accomplished on the half-speed shaft actuating the valves.

Very soon after this first design had been tried out, a second Vee type engine was produced which, at 1,200 revolutions per minute, developed 60 horse-power; the size of this engine was practically identical with that of its forerunner, the only exception being an increase of half an inch in the cylinder stroke—a very long stroke of piston in relation to the bore of the cylinder. In the first of these two engines, which was designed for airship propulsion, the weight had been about 8 lbs. per brake horse-power, no special attempt appearing to have been made to fine down for extreme lightness; in this 60 horse-power design, the weight was reduced to 6·1 lbs. per horse-power, counting the latter as normally rated; the engine actually gave a maximum of 75 brake horse-power, reducing the ratio of weight to power very considerably below the figure given.

Sikh, 12-cylinder magneto, end view.

Sikh, 12-cylinder, side view.

The accompanying diagram illustrates a later Wolseley model, end elevation, the eight-cylindered 120 horse-power Vee type aero engine of the early war period. With this engine, each crank pin has two connecting rods bearing on it, these being placed side by side and connected to the pistons of opposite cylinders, and the two cylinders of the pair are staggered by an amount equal to the width of the connecting rod-bearing, to afford accommodation for the rods. The crankshaft was a nickel chrome steel forging, machined hollow, with four crank pins set at 180 degrees to each other, and carried in three bearings lined with anti-friction metal. The connecting rods were made of tubular nickel chrome steel, and the pistons of drawn steel, each being fitted with four piston rings. Of these the two rings nearest to the piston head were of the ordinary cast-iron type, while the others were of phosphor bronze, so arranged as to take the side thrust of the piston. The cylinders were of steel, arranged in two groups or rows of four, the angular distance between them being 90 degrees. In the space above the crankshaft, between the cylinder rows, was placed the valve-operating mechanism, together with the carburettor and ignition system, thus rendering this a very compact and accessible engine. The combustion heads of the cylinders were made of cast-iron, screwed into the steel cylinder barrels; the water-jacket was of spun aluminium, with one end fitting over the combustion head and the other free to slide on the cylinder; the water-joint at the lower end was made tight by a Dermatine ring carried between small flanges formed on the cylinder barrel. Overhead valves were adopted, and in order to make these as large as possible the combustion chamber was made slightly larger in diameter than the cylinder, and the valves set at an angle. Dual ignition was fitted in each cylinder, coil and accumulator being used for starting and as a reserve in case of failure of the high-tension magneto system fitted for normal running. There was a double set of lubricating pumps, ensuring continuity of the oil supply to all the bearings of the engine.

End View of Wolseley 120 horse-power Vee-type Engine.