Critchley’s list of aero engines being constructed in 1910 shows twelve of the radial type, with powers of between 14 and 100 horse-power, and with from three to ten cylinders—this last is probably the greatest number of cylinders that can be successfully arranged in circular form. Of the twelve types of 1910, only two were water-cooled, and it is to be noted that these two ran at the slowest speeds and had the lowest weight per horse-power of any.
The Anzani radial was considerably developed, special attention being paid to this type by its makers, and by 1914 the Anzani list comprised seven different sizes of air-cooled radials. Of these the largest had twenty cylinders, developing 200 brake horse-power—it was virtually a double radial—and the smallest was the original 30 horse-power three-cylinder design. A six-cylinder model was formed by a combination of two groups of three cylinders each, acting upon a double-throw crankshaft; the two crank pins were set at 180 degrees to each other, and the cylinder groups were staggered by an amount equal to the distance between the centres of the crank pins. Ten-cylinder radial engines are made with two groups of five cylinders acting upon two crank pins set at 180 degrees to each other; the largest Anzani ‘ten’ developed 125 horse-power at 1,200 revolutions per minute, the ten cylinders being each 4·5 inches in bore with stroke of 5·9 inches, and the weight of the engine being 3·7 lbs. per horse-power. In the 200 horse-power Anzani radial the cylinders are arranged in four groups of five each, acting on two crank pins. The bore of the cylinders in this engine is the same as in the three-cylinder, but the stroke is increased to 5·5 inches. The rated power is developed at 1,300 revolutions per minute, and the engine complete weighs 3·4 lbs. per horse-power.
With this 200 horse-power Anzani, a petrol consumption of as low as 0·49 lbs. of fuel per brake horse-power per hour has been obtained, but the consumption of lubricating oil is compensatingly high, being up to one-fifth of the fuel used. The cylinders are set desaxé with the crank shaft, and are of cast-iron, provided with radiating ribs for air-cooling; they are attached to the crank case by long bolts passing through bosses at the top of the cylinders, and connected to other bolts at right angles through the crank case. The tops of the cylinders are formed flat, and seats for the inlet and exhaust valves are formed on them. The pistons are cast-iron, fitted with ordinary cast-iron spring rings. An aluminium crank case is used, being made in two halves connected together by bolts, which latter also attach the engine to the frame of the machine. The crankshaft is of nickel steel, made hollow, and mounted on ball-bearings in such a manner that practically a combination of ball and plain bearings is obtained; the central web of the shaft is bent to bring the centres of the crank pins as close together as possible, leaving only room for the connecting rods, and the pins are 180 degrees apart. Nickel steel valves of the cone-seated, poppet type are fitted, the inlet valves being automatic, and those for the exhaust cam-operated by means of push-rods. With an engine having such a number of cylinders a very uniform rotation of the crankshaft is obtained, and in actual running there are always five of the cylinders giving impulses to the crankshaft at the same time.
An interesting type of pioneer radial engine was the Farcot, in which the cylinders were arranged in a horizontal plane, with a vertical crankshaft which operated the air-screw through bevel gearing. This was an eight-cylinder engine, developing 64 horse-power at 1,200 revolutions per minute. The R.E.P. type, in the early days, was a ‘fan’ engine, but the designer, M. Robert Pelterie, turned from this design to a seven-cylinder radial, which at 1,100 revolutions per minute gave 95 horse-power. Several makers entered into radial engine development in the years immediately preceding the War, and in 1914 there were some twenty-two different sizes and types, ranging from 30 to 600 horse-power, being made, according to report; the actual construction of the latter size at this time, however, is doubtful.
Probably the best example of radial construction up to the outbreak of War was the Salmson (Canton-Unne) water-cooled, of which in 1914 six sizes were listed as available. Of these the smallest was a seven-cylinder 90 horse-power engine, and the largest, rated at 600 horse-power, had eighteen cylinders. These engines, during the War, were made under licence by the Dudbridge Ironworks in Great Britain.
Section of 200 h.p. Salmson Radial Engine.
The accompanying diagram shows the construction of the cylinders in the 200 horse-power size, showing the method of cooling, and the arrangement of the connecting rods. A patent planetary gear, also shown in the diagram, gives exactly the same stroke to all the pistons. The complete engine has fourteen cylinders, of forged steel machined all over, and so secured to the crank case that any one can be removed without parting the crank case. The water-jackets are of spun copper, brazed on to the cylinder, and corrugated so as to admit of free expansion; the water is circulated by means of a centrifugal pump. The pistons are of cast-iron, each fitted with three rings, and the connecting rods are of high-grade steel, machined all over and fitted with bushes of phosphor bronze; these rods are connected to a central collar, carried on the crank pin by two ball-bearings. The crankshaft has a single throw, and is made in two parts to allow the cage for carrying the big end-pins of the connecting rods to be placed in position.
The casing is in two parts, on one of which the brackets for fixing the engine are carried, while the other part carries the valve-gear. Bolts secure the two parts together. The mechanically-operated steel valves on the cylinders are each fitted with double springs, and the valves are operated by rods and levers. Two Zenith carburettors are fitted on the rear half of the crank case, and short induction pipes are led to each cylinder; each of the carburettors is heated by the exhaust gases. Ignition is by two high-tension magnetos, and a compressed air self-starting arrangement is provided. Two oil pumps are fitted for lubricating purposes, one of which forces oil to the crankshaft and connecting-rod bearings, while the second forces oil to the valve gear, the cylinders being so arranged that the oil which flows along the walls cannot flood the lower cylinders. This engine operates upon a six-stroke cycle, a rather rare arrangement for internal combustion engines of the electrical ignition type; this is done in order to obtain equal angular intervals for the working impulses imparted to the rotating crankshaft, as the cylinders are arranged in groups of seven, and all act upon the one crankshaft. The angle, therefore, between the impulses is 77-1/7 degrees. A diagram is inset giving a side view of the engine, in order to show the grouping of the cylinders.