Yet is not red the usual colour of the moon when eclipsed, and when it has not entirely disappeared? Could the solar rays reaching our satellite by the effect of refraction, and after an absorption experienced in the lowest strata of the terrestrial atmosphere, receive another tint? Are there not in the moon, when freely illuminated, and opposite to the sun, from one to two hundred little points, remarkable by the brightness of their light? Would it be possible for those little points not to be also distinguishable in the moon, when it receives only the portion of solar light which is refracted and coloured by our atmosphere?
Herschel was more successful in his remarks on the absence of a lunar atmosphere. During the solar eclipse of the 5th September, 1793, the illustrious astronomer particularly directed his attention to the shape of the acute horn resulting from the intersection of the limbs of the moon and of the sun. He deduced from his observation that if towards the point of the horn there had been a deviation of only one second, occasioned by the refraction of the solar light in the lunar atmosphere, it would not have escaped him.
Herschel made the planets the object of numerous researches. Mercury was the one with which he least occupied himself; he found its disk perfectly round on observing it during its projection, that is to say, in astronomical language, during its transit over the sun on the 9th of November, 1802. He sought to determine the time of the rotation of Venus since the year 1777. He published two memoirs relative to Mars, the one in 1781, the other in 1784, and the discovery of its being flattened at the poles we owe to him. After the discovery of the small planets, Ceres, Pallas, Juno, and Vesta, by Piazzi, Olbers, and Harding, Herschel applied himself to measuring their angular diameter. He concluded from his researches that those four new bodies did not deserve the name of planets, and he proposed to call them asteroïds. This epithet was subsequently adopted; though bitterly criticized by a historian of the Royal Society of London, Dr. Thomson, who went so far as to suppose that the learned astronomer "had wished to deprive the first observers of those bodies, of all idea of rating themselves as high as him (Herschel) in the scale of astronomical discoverers." I should require nothing farther to annihilate such an imputation, than to put it by the side of the following passage, extracted from a memoir by this celebrated astronomer, published in the Philosophical Transactions, for the year 1805: "The specific difference existing between planets and asteroïds appears now, by the addition of a third individual of the latter species, to be more completely established, and that circumstance, in my opinion, has added more to the ornament of our system than the discovery of a new planet could have done."
Although much has not resulted from Herschel's having occupied himself with the physical constitution of Jupiter, astronomy is indebted to him for several important results relative to the duration of that planet's rotation. He also made numerous observations on the intensities and comparative magnitudes of its satellites.
The compression of Saturn, the duration of its rotation, the physical constitution of this planet and that of its ring, were, on the part of Herschel, the object of numerous researches which have much contributed to the progress of planetary astronomy. But on this subject two important discoveries especially added new glory to the great astronomer.
Of the five known satellites of Saturn at the close of the 17th century, Huygens had discovered the fourth; Cassini the others.
The subject seemed to be exhausted, when news from Slough showed what a mistake this was.
On the 28th of August, 1789, the great forty-foot telescope revealed to Herschel a satellite still nearer to the ring than the other five already observed. According to the principles of the nomenclature previously adopted, the small body of the 28th August ought to have been called the first satellite of Saturn, the numbers indicating the places of the other five would then have been each increased by a unity. But the fear of introducing confusion into science by these continual changes of denomination, induced a preference for calling the new satellite the sixth.
Thanks to the prodigious powers of the forty-foot telescope, a last satellite, the seventh, showed itself on the 17th of September, 1789, between the sixth and the ring.
This seventh satellite is extremely faint. Herschel, however, succeeding in seeing it whenever circumstances were very favourable, even by the aid of the twenty-foot telescope.