"Doubtless the Minister of Public Instruction was influenced by these considerations, when upon the occasion of a new edition of the works of Laplace having become necessary, he demanded of you to substitute the great French family for the personal family of the illustrious geometer. We give our full and unreserved adhesion to this proposition. It springs from a feeling of patriotism which will not be gainsayed by any one in this assembly."

In fact, the Chamber of Deputies had only to examine and solve this single question: "Are the works of Laplace of such transcendent, such exceptional merit, that their republication ought to form the subject of deliberation of the great powers of the State?" An opinion prevailed, that it was not enough merely to appeal to public notoriety, but that it was necessary to give an exact analysis of the brilliant discoveries of Laplace in order to exhibit more fully the importance of the resolution about to be adopted. Who could hereafter propose on any similar occasion that the Chamber should declare itself without discussion, when a desire was felt, previous to voting in favour of a resolution so honourable to the memory of a great man, to fathom, to measure, to examine minutely and from every point of view monuments such as the Mécanique Céleste and the Exposition du Système du Monde? It has appeared to me that the report drawn up in the name of a committee of one of the three great powers of the State might worthily close this series of biographical notices of eminent astronomers.[22]

The Marquis de Laplace, peer of France, one of the forty of the French Academy, member of the Academy of Sciences and of the Bureau des Longitudes, an associate of all the great Academies or Scientific Societies of Europe, was born at Beaumont-en-Auge of parents belonging to the class of small farmers, on the 28th of March, 1749; he died on the 5th of March, 1827.

The first and second volumes of the Mécanique Céleste were published in 1799; the third volume appeared in 1802, the fourth volume in 1805; as regards the fifth volume, Books XI. and XII. were published in 1823, Books XIII. XIV. and XV. in 1824, and Book XVI. in 1825. The Théorie des Probabilités was published in 1812. We shall now present the reader with the history of the principal astronomical discoveries contained hi these immortal works.

Astronomy is the science of which the human mind may most justly boast. It owes this indisputable preëminence to the elevated nature of its object, to the grandeur of its means of investigation, to the certainty, the utility, and the unparalleled magnificence of its results.

From the earliest period of the social existence of mankind, the study of the movements of the heavenly bodies has attracted the attention of governments and peoples. To several great captains, illustrious statesmen, philosophers, and eminent orators of Greece and Rome it formed a subject of delight. Yet, let us be permitted to state, astronomy truly worthy of the name is quite a modern science. It dates only from the sixteenth century.

Three great, three brilliant phases, have marked its progress.

In 1543 Copernicus overthrew with a firm and bold hand, the greater part of the antique and venerable scaffolding with which the illusions of the senses and the pride of successive generations had filled the universe. The earth ceased to be the centre, the pivot of the celestial movements; it henceforward modestly ranged itself among the planets; its material importance, amid the totality of the bodies of which our solar system is composed, found itself reduced almost to that of a grain of sand.

Twenty-eight years had elapsed from the day when the Canon of Thorn expired while holding in his faltering hands the first copy of the work which was to diffuse so bright and pure a flood of glory upon Poland, when Würtemberg witnessed the birth of a man who was destined to achieve a revolution in science not less fertile in consequences, and still more difficult of execution. This man was Kepler. Endowed with two qualities which seemed incompatible with each other, a volcanic imagination, and a pertinacity of intellect which the most tedious numerical calculations could not daunt, Kepler conjectured that the movements of the celestial bodies must be connected together by simple laws, or, to use his own expressions, by harmonic laws. These laws he undertook to discover. A thousand fruitless attempts, errors of calculation inseparable from a colossal undertaking, did not prevent him a single instant from advancing resolutely towards the goal of which he imagined he had obtained a glimpse. Twenty-two years were employed by him in this investigation, and still he was not weary of it! What, in reality, are twenty-two years of labour to him who is about to become the legislator of worlds; who shall inscribe his name in ineffaceable characters upon the frontispiece of an immortal code; who shall be able to exclaim in dithyrambic language, and without incurring the reproach of any one, "The die is cast; I have written my book; it will be read either in the present age or by posterity, it matters not which; it may well await a reader, since God has waited six thousand years for an interpreter of his works?"[23]

To investigate a physical cause capable of making the planets revolve in closed curves; to place the principle of the stability of the universe in mechanical forces and not in solid supports such as the spheres of crystal which our ancestors had dreamed of; to extend to the revolutions of the heavenly bodies the general principles of the mechanics of terrestrial bodies,—such were the questions which remained to be solved after Kepler had announced his discoveries to the world.