I cannot quit this subject without at least alluding to the circumstances in the solar system upon which depend the so long unexplained variations of velocity of the Moon, Jupiter, and Saturn.

The motion of the earth around the sun is mainly effected in an ellipse, the form of which is liable to vary from the effects of planetary perturbation. These alterations of form are periodic; sometimes the curve, without ceasing to be elliptic, approaches the form of a circle, while at other times it deviates more and more from that form. From the epoch of the earliest recorded observations, the eccentricity of the terrestrial orbit has been diminishing from year to year; at some future epoch the orbit, on the contrary, will begin to deviate from the form of a circle, and the eccentricity will increase to the same extent as it previously diminished, and according to the same laws.

Now, Laplace has shown that the mean motion of the moon around the earth is connected with the form of the ellipse which the earth describes around the sun; that a diminution of the eccentricity of the ellipse inevitably induces an increase in the velocity of our satellite, and vice versâ; finally, that this cause suffices to explain the numerical value of the acceleration which the mean motion of the moon has experienced from the earliest ages down to the present time.[33]

The origin of the inequalities in the mean motions of Jupiter and Saturn will be, I hope, as easy to conceive.

Mathematical analysis has not served to represent in finite terms the values of the derangements which each planet experiences in its movement from the action of all the other planets. In the present state of science, this value is exhibited in the form of an indefinite series of terms diminishing rapidly in magnitude. In calculation, it is usual to neglect such of those terms as correspond in the order of magnitude to quantities beneath the errors of observation. But there are cases in which the order of the term in the series does not decide whether it be small or great. Certain numerical relations between the primitive elements of the disturbing and disturbed planets may impart sensible values to terms which usually admit of being neglected. This case occurs in the perturbations of Saturn produced by Jupiter, and in those of Jupiter produced by Saturn. There exists between the mean motions of these two great planets a simple relation of commensurability, five times the mean motion of Saturn, being, in fact, very nearly equal to twice the mean motion of Jupiter. It happens, in consequence, that certain terms, which would otherwise be very small, acquire from this circumstance considerable values. Hence arise in the movements of these two planets, inequalities of long duration which require more than 900 years for their complete development, and which represent with marvellous accuracy all the irregularities disclosed by observation.

Is it not astonishing to find in the commensurability of the mean motions of two planets, a cause of perturbation of so influential a nature; to discover that the definitive solution of an immense difficulty—which baffled the genius of Euler, and which even led persons to doubt whether the theory of gravitation was capable of accounting for all the phenomena of the heavens—should depend upon the fortuitous circumstance of five times the mean motion of Saturn being equal to twice the mean motion of Jupiter? The beauty of the conception and the ultimate result are here equally worthy of admiration.[34]

We have just explained how Laplace demonstrated that the solar system can experience only small periodic oscillations around a certain mean state. Let us now see in what way he succeeded in determining the absolute dimensions of the orbits.

What is the distance of the sun from the earth? No scientific question has occupied in a greater degree the attention of mankind; mathematically speaking, nothing is more simple. It suffices, as in common operations of surveying, to draw visual lines from the two extremities of a known base to an inaccessible object. The remainder is a process of elementary calculation. Unfortunately, in the case of the sun, the distance is great and the bases which can be measured upon the earth are comparatively very small. In such a case the slightest errors in the direction of the visual lines exercise an enormous influence upon the results.

In the beginning of the last century Halley remarked that certain interpositions of Venus between the earth and the sun, or, to use an expression applied to such conjunctions, that the transits of the planet across the sun's disk, would furnish at each observatory an indirect means of fixing the position of the visual ray very superior in accuracy to the most perfect direct methods.[35]

Such was the object of the scientific expeditions undertaken in 1761 and 1769, on which occasions France, not to speak of stations in Europe, was represented at the Isle of Rodrigo by Pingré, at the Isle of St. Domingo by Fleurin, at California by the Abbé Chappe, at Pondicherry by Legentil. At the same epochs England sent Maskelyne to St. Helena, Wales to Hudson's Bay, Mason to the Cape of Good Hope, Captain Cooke to Otaheite, &c. The observations of the southern hemisphere compared with those of Europe, and especially with the observations made by an Austrian astronomer Father Hell at Wardhus in Lapland, gave for the distance of the sun the result which has since figured in all treatises on astronomy and navigation.