The vapors are made to traverse the coil S, which is kept at an average temperature of 122° F., in the right hand compartment, and somewhat higher in the other. They pass first through J into the hottest part of the coil, and there give up much of the water with which they are mixed, and the process of concentration continues as they pass through the coil. Each spiral is connected at the bottom with a vertical pipe by which the condensed liquors are run off; these are conducted into the retrograding pipe p p. Those which are condensed in the hottest part of the coil, and are consequently the weakest, are led by the pipe L into the third vessel in the column D, Fig. [16], while the stronger or more vaporized portions pass through L′ into the fifth vessel. Stop-cocks at m, n, o regulate the flow of the liquid into these vessels, and consequently also the strength of the spirit obtained.

Lastly, as the highly concentrated vapors leave the coil S at R, they are condensed in the vessel F, which contains another coil. This is kept cool by a stream of liquid flowing from the reservoir H into the smaller cistern G from which a continuous and regular flow is kept up through the tap v into a funnel N and thence into condenser F. It ultimately flows into condenser E through pipe t, there being no other outlet. The finished products run out by pipe x into suitable receivers.

It will be seen that the condenser E has two functions. First it condenses the alcoholic vapors before transmitting them to the final condenser F, rejecting and sending back those vapors which are not highly enough vaporized. Second it heats the wash intended for distilling by appropriating the heat of the vapors to be condensed. Thus two birds are killed with one stone. It will be noticed that the same result is accomplished in the columns C and D. This is the principle of all modern stills.

Another form of still which is very analogous to that last described is Coffey’s apparatus, shown in Fig. [18], and is the immediate prototype of the stills used to-day in all but the simplest plants.

Fig. 18.—Coffey’s Rectifying Still.

It consists of two columns, C the analyser, and H the rectifier, placed side by side and above a chamber containing a steam pipe b from a boiler A. This chamber is divided into two compartments by a horizontal partition a pierced with small holes and furnished with four safety valves e e e e. The column C is divided into twelve small compartments, by means of horizontal partitions of copper, also pierced with holes and each provided with two little valves f. The spirituous vapors passing up this column are led by a pipe i to the bottom of the second column or rectifier. This column is also divided into compartments in precisely the same way, except that there are fifteen of them, the ten lowest being separated by the partitions, which are pierced with holes. The remaining five partitions are not perforated, but have a wide opening as at w, for the passage of the vapors, and form a condenser for the finished spirit. Between each of these partitions passes one bend of a long zig-zag pipe m, beginning at the top of the column, winding downwards to the bottom, and finally passing upwards again to the top of the other column, so as to discharge its contents into the highest compartment. The apparatus works in the following way: The pump Q is set in motion, and the zig-zag pipe m then fills with the wash or fermented liquor until it runs over at n into the highest compartment of column C. The pump is then stopped, and steam is introduced through b, passing up through the two bottom chambers and the short pipe F into the analyzing column, finally reaching the bottom of the other column by means of the pipe i. Here it surrounds the coil pipe m containing the wash, so that the latter becomes rapidly heated.

When several bends of the pipe have become heated, the pump is again set to work, and the hot wash is driven rapidly through the coil and into the analyzer at n. Here it takes the course indicated by the arrows, running down from chamber to chamber through the tubes h until it reaches the bottom; none of the liquor finds its way through the perforations in the various partitions, owing to the pressure of the ascending steam.