While various forms of steam generators may be used, Fig. [43] shows a simple construction well adapted to the needs of a small distillery. D designates the brick work of a furnace, and A the boiler. This is so set that an annular space E surrounds the sides of the boiler, through which the products of combustion must pass.

The head of the boiler is connected by a pipe B and collar b to the steam inlet pipe I of the steaming vat, heretofore described, as by the collars b i.

A filling tube C enters the boiler and projects nearly to the bottom, and the water outlet-pipe F with cock f leads off from the upper water line. The tube C forms also a safety valve, for if the steam pressure becomes too great in the boiler and connected vat, it will force water up and out through the tube. If, however, the water falls below the level of the lower end of the tube, steam will issue and warn the attendant that water is too low. It would be best however, to provide a steam gauge, whereby the pressure of steam in the boiler and vat could be accurately indicated.

Fig. 43.—Steam Generator.

It is to be noted that when steamed the potatoes will swell and occupy more space and that the steam vat should therefore not be much more than two-thirds filled with potatoes.

With the steaming vat above shown, the potatoes are delivered mixed with a considerable quantity of water, but a better plan is to have a perforated false bottom to the tub, whereby the condensed water may be carried away, the steamed potatoes remaining behind.

Two hours of steaming should reduce the potatoes to proper condition, which may be tested by introducing a pointed iron rod through a suitable aperture, normally kept closed. If the rod passes freely inward, the potatoes are done and may be discharged into the crusher, shown in Fig. [44]. In this Fig. the steaming vat A is shown mounted above the crusher. A pipe B with cock b leads to the steam generator. The steamed potatoes are shoveled out through the door a, which is usually held closed by means of the clamps or buttons a′ a″.

The crusher consists of a hopper C whose bottom fits closely against two adjacent smooth faced rolls H I of iron. These are driven by gears D E. The shafts of these gears have cranks d d whereby it may be operated. These gears are unequal so that the rolls shall move at different speeds, and thus one will have a grinding action against the face of the other. A counter weighted scraper e bears against the face of the roll.