The advantages that accrue to acetylene from its mode of production, and the nature of the raw material from which it is obtained, are in reality of more importance. Acetylene is readily and quickly produced from a raw material--calcium carbide--which, relatively to the yield of light of the gaseous product, is less bulky than the raw materials of other gases. In comparison also with oils and candles, calcium carbide is capable of yielding, through the acetylene obtainable from it, more light per unit of space occupied by it. This higher light-yielding capacity of calcium carbide, ready to be developed through acetylene, gives the latter gas a great advantage over all other illuminants in respect of compactness for transport or storage. Hence, where facilities for transport or storage are bad or costly, acetylene may be the most convenient or cheapest illuminant, notwithstanding its relatively high cost in many other cases. For example, in a district to which coal and oil must be brought great distances, the freight on them may be so heavy that--regarding the question as simply one of obtaining light in the cheapest manner--it may be more economical to bring calcium carbide an equal or even greater distance and generate acetylene from it on the spot, than to use oil or make coal-gas for lighting purposes, notwithstanding that acetylene may not be able to compete on equal terms with oil--or coal-gas at the place from which the carbide is brought. Likewise where storage accommodation is limited, as in vehicles or in ships or lighthouses, calcium carbide may be preferable to oil or other illuminants as a source of light. Disregarding for the moment intrinsic advantages which the light obtainable from acetylene has over other lights, there are many cases where, owing to saving in cost of carriage, acetylene is the most economical illuminant; and many other cases where, owing to limited space for storage, acetylene far surpasses other illuminants in convenience, and is practically indispensable.

The light of the acetylene flame has, however, some intrinsic advantages over the light of other artificial illuminants. In the first place, the light more closely resembles sunlight in composition or "colour." It is more nearly a pure "white" light than is any other flame or incandescent body in general use for illuminating purposes. The nature or composition of the light of the acetylene flame will be dealt with more exhaustively later, and compared with that afforded by other illuminants; but, speaking generally, it may be said that the self-luminous acetylene light is superior in tint, to all other artificial lights, for which reason it is invaluable for colour-judging and shade-matching. In the second place, when the gas issues from a suitable self-luminous burner under proper pressure, the acetylene flame is perfectly steady; and in this respect it in preferable to most types of electric light, to all self- luminous coal-gas flames and candles, and to many varieties of oil-lamp. In steadiness and freedom from flicker it is fully equal to incandescent coal-gas light, but it in distinctly superior to the latter by virtue of its complete freedom from noise. The incandescent acetylene flame emits a slight roaring, but usually not more than that coming from an atmospheric coal-gas burner. With the exception of the electric arc, self-luminous acetylene yields a flame of unsurpassed intensity, and yet its light is agreeably soft. In the third place, where electricity is absent, a brilliancy of illumination which can readily be obtained from self-luminous acetylene can otherwise only be procured by the employment of the incandescent system applied either to coal-gas or to oil; and there are numerous situations, such as factories, workshops, and the like, where the vibration of the machinery or the prevalence of dust renders the use of mantles troublesome if not impossible. Anticipating what will be said later, in cases like these, the cost of lighting by self-luminous acetylene may fairly be compared with self-luminous coal- gas or oil only; although in other positions the economy of the Welsbach mantle must be borne in mind.

Acetylene lighting presents also certain important hygienic advantages over other forms of flame lighting, in that it exhausts, vitiates, and heats the air of a room to a less degree, for a given yield of light, than do either coal-gas, oils, or candles. This point in favour of acetylene is referred to here only in general terms; the evidence on which the foregoing statement is based will be recorded in a tabular comparison of the cost and qualities of different illuminants. Exhaustion of the air means, in this connexion, depletion of the oxygen normally present in it. One volume of acetylene requires 2-1/2 volumes of oxygen for its complete combustion, and since 21 volumes of oxygen are associated in atmospheric air with 79 volumes of inert gases--chiefly nitrogen--which do not actively participate in combustion, it follows that about 11.90 volumes of air are wholly exhausted, or deprived of oxygen, in the course of the combustion of one volume of acetylene. If the light which may be developed by the acetylene is brought into consideration, it will be found that, relatively to other illuminants, acetylene causes less exhaustion of the air than any other illuminating agent except electricity. For instance, coal-gas exhausts only about 6- 1/2 times its volume of air when it is burnt; but since, volume for volume, acetylene ordinarily yields from three to fifteen times as much light as coal-gas, it follows that the same illuminative value is obtainable from acetylene by considerably less exhaustion of the air than from coal-gas. The exact ratio depends on the degree of efficiency of the burners, or of the methods by which light is obtained from the gases, as will be realised by reference to the table which follows. Broadly speaking, however, no illuminant which evolves light by combustion (oxidation), and which therefore requires a supply of oxygen or air for its maintenance, affords light with so little exhaustion of the air as acetylene. Hence in confined, ill-ventilated, or crowded rooms, the air will suffer less exhaustion, and accordingly be better for breathing, if acetylene is chosen rather than any other illuminant, except electricity.

Next, in regard to vitiation of the air, by which is meant the alteration in its composition resulting from the admixture of products of combustion with it. Electric lighting is as superior to other modes of lighting in respect of direct vitiation as of exhaustion of the air, because it does not depend on combustion. Putting it aside, however, light is obtainable by means of acetylene with less attendant vitiation of the air than by means of any other gas or of oil or candles. The principal vitiating factor in all cases is the carbonic acid produced by the combustion. Now one volume of acetylene on combustion yields two volumes of carbonic acid, whereas one volume of coal-gas yields about 0.6 volume of carbonic acid. But even assuming that the incandescent system of lighting is applied in the case of coal-gas and not of acetylene, the ratio of the consumption of the two gases for the development of a given illuminative effect will be such that no more carbonic acid will be produced by the acetylene; and if the incandescent system is applied either in both cases or in neither, the ratio will be greatly in favour of acetylene. The other factors which determine the vitiation of the air of a room in which the gas is burning are likewise under ordinary conditions more in favour of acetylene. They are not, however, constant, since the so-called "impurities," which on combustion cause vitiation of the air, vary greatly in amount according to the extent to which the gases have been purified. London coal-gas, which was formerly purified to the highest degree practically attainable, used to contain on the average only 10 to 12 grains of sulphur per 100 cubic feet, and virtually no other impurity. But now coal-gas, in London and most provincial towns, contains 40 to 50 grains of sulphur per 100 cubic foot. At least 5 grains of ammonia per 100 cubic foot in also present in coal-gas in some towns. Crude acetylene also contains sulphur and ammonia, that coming from good quality calcium carbide at the present day including about 31 grains of the former and 25 grains of the latter per 100 cubic feet. But crude acetylene is also accompanied by a third impurity, viz., phosphoretted hydrogen or phosphine, which in unknown in coal-gas, and which is considerably more objectionable than either ammonia or sulphur. The formation, behaviour, and removal of those various impurities will be discussed in Chapter V.; but here it may be said that there is no reason why, if calcium carbide of a fair degree of purity has been used, and if the gas has been generated from it in a properly designed and smoothly working apparatus-- this being quite as important as, or even more important than, the purity of the original carbide--the gas should not be freed from phosphorus, sulphur, and ammonia to the utmost necessary or desirable extent, by processes which are neither complicated nor expensive. And if this is done, as it always should be whenever the acetylene is required for domestic lighting, the vitiation of the air of a room due to the "impurities" in the gas will become much less in the case of acetylene than in that of even well-purified coal-gas; taking equal illuminating effect as the basis for comparison.

Acetylene is similarly superior, speaking generally, to petroleum in respect of impurities, though the sulphur present in petroleum oils, such as are sold in this country for household use, though very variable, is often quite small in amount, and seldom is responsible for serious vitiation of the atmosphere.

Regarding somewhat more closely the relative convenience and safety of acetylene and paraffin for the illumination of country residences, it may be remarked that an extraordinarily great amount of care must be bestowed upon each separate lamp if the whole house is to be kept free from an odour which is very offensive to the nostrils; and the time occupied in this process, which of itself is a disagreeable one, reaches several hours every day. Habit has taught the country dweller to accept as inevitable this waste of time, and largely to ignore the odour of petroleum in his abode; but the use of acetylene entirely does away with the daily cleaning of lamps, and, if the pipe-fitting work has been done properly, yields light absolutely unaccompanied by smell. Again, unless most carefully managed, the lamp-room of a large house, with its store of combustible oil, and its collection of greasy rags, must unavoidably prove a sensible addition to the risk of fire. The analogue of the lamp- room when acetylene is employed is the generator-house, and this is a separate building at some distance from the residence proper. There need be no appreciable odour in the generator-house, except during the times of charging the apparatus; but if there is, it passes into the open air instead of percolating into the occupied apartments.

The amount of heat developed by the combustion of acetylene also is less for a given yield of light than that developed by most other illuminants. The gas, indeed, is a powerful heating gas, but owing to the amount consumed being so small in proportion to the light developed, the heat arising from acetylene lighting in a room is less than that from most other illuminating agents, if the latter are employed to the extent required to afford equally good illumination. The ratio of the heat developed in acetylene lighting to that developed in, e.g., lighting by ordinary coal-gas, varies considerably according to the degree of efficiency of the burners, or, in other words, of the methods by which light is obtained from the gases. Volume for volume, acetylene yields on combustion about three and a half times as much heat as coal- gas, yet, owing to its superior efficiency as an illuminant, any required light may be obtained through it with no greater evolution of heat than the best practicable (incandescent) burners for coal-gas produce. The heat evolved by acetylene burners adequate to yield a certain light is very much less than that evolved by ordinary flat-flame coal-gas burners or by oil-lamps giving the same light, and is not more than about three times as much as that from ordinary electric lamps used in numbers sufficient to give the same light. More exact figures for the ratio between the heat developed in acetylene lighting and that in other modes of lighting are given in the table already referred to.

In connexion with the smaller amount of heat developed per unit of light when acetylene is the illuminant, the frequently exaggerated claim that acetylene does not blacken ceilings at all may be studied. Except it be a carelessly manipulated petroleum-lamp, no form of artificial illuminant employed nowadays ever emits black smoke, soot, or carbon, in spite of the fact that all luminous flames commercially capable of utilisation do contain free carbon in the elemental state. The black mark on a ceiling over a source of light is caused by a rising current of hot air and combustion products set up by the heat accompanying the light, which current of hot gas carries with it the dust and dirt always present in the atmosphere of an inhabited room. As this current of air and burnt gas travels in a fairly concentrated vertical stream, and as the ceiling is comparatively cool and exhibits a rough surface, that dust and dirt are deposited on the ceiling above the flame, but the stain is seldom or never composed of soot from the illuminant itself. Proof of this statement may be found in the circumstance that a black mark is eventually produced over an electric glow-lamp and above a pipe delivering hot water. Clearly, therefore, the depth and extent of the mark will depend on the volume and temperature of the hot gaseous current; and since per unit of light acetylene emits a far smaller quantity of combustion products and a far smaller amount of heat than any other flame illuminant except incandescent coal-gas, the inevitable black mark over its flame takes very much longer to appear. Quite roughly speaking, as may be deduced from what has already been said on this subject, the luminous flame of acetylene "blackens" a ceiling at about the same rate as a coal-gas burner of the best Welsbach type.

There is one respect in which acetylene and other flame illuminants are superior to electric lighting, viz., that they sterilise a larger volume of air. All the air which is needed to support combustion, as well as the excess of air which actually passes through the burner tube and flame in incandescent burners, is obviously sterilised; but so also is the much larger volume of air which, by virtue of the up-current due to the heat of the flame, is brought into anything like close proximity with the light. The electric glow-lamp, and the most popular and economical modern enclosed electric arc-lamp, sterilise only the much smaller volume of air which is brought into direct contact with their glass bulbs. Moreover, when large numbers of persons are congregated in insufficiently ventilated buildings--and many public rooms are insufficiently ventilated--the air becomes nauseous to inspire and positively detrimental to the health of delicate people, by reason of the human effluvia which arise from soiled raiment and uncleansed or unhealthy bodies, long before the proportion of carbonic acid by itself is high enough to be objectionable. Thus a certain proportion of carbonic acid coming from human lungs and skin is more harmful than the same proportion of carbonic acid derived from the combustion of gas or oil. Hence acetylene and flame illuminants generally have the valuable hygienic advantages over electric lighting, not only of killing a far larger number of the micro-organisms that may be present in the air, but, by virtue of their naked flames, of burning up and destroying a considerable quantity of the aforesaid odoriferous matter, thus relieving the nose and materially assisting in the prevention of that lassitude and anæmia occasionally follow the constant inspiration of air rendered foul by human exhalations.

The more important advantages of acetylene as an illuminant have now been indicated, and it remains to discuss the cost of acetylene lighting in comparison with other modes of procuring artificial light. At the outset it may be stated that a very much greater reduction in the price of calcium carbide--from which acetylene is produced--than is likely to ensue under the present methods and conditions of manufacture will be required to make acetylene lighting as cheap as ordinary gas lighting in towns in this country, provided incandescent burners are used for the gas. On the score of cheapness (and of convenience, unless the acetylene were delivered to the premises from some central generating station) acetylene cannot compete as an illuminant with coal-gas where the latter costs, say, not more than 5s. per 1000 cubic feet, if only reasonable attention is given to the gas-burners, and at least a quarter of them are on the incandescent system. If, on the other hand, coal-gas is misused and wasted through the employment only of interior or worn-out flat-flame burners, while the best types of burner are used for acetylene, the latter gas may prove as cheap for lighting as coal-gas at, say, 2s. 6d. per 1000 cubic feet (and be far better hygienically); whereas, contrariwise, if coal-gas is used only with good and properly maintained incandescent burners, it may cost over 10s. per 1000 cubic feet, and be cheaper than acetylene burned in good burners (and as good from the hygienic standpoint). More precise figures on the relative costs of coal-gas lighting and acetylene lighting are given in the tabular statement at the close of this chapter.