The difficulty of constructing atmospheric acetylene burners in which the flame would not be likely to strike back to the nipple has already been referred to in connexion with the construction atmospheric burners for incandescent lighting. Owing, however, to the large proportions of the atmospheric burners of boiling rings and stove and in particular to the larger bore of their mixing tube, the risk of the flame striking back is greater with them, than with incandescent lighting burners. The greatest trouble is presented at lighting, and when the pressure of the gas-supply is low. The risk of firing-back when the burner is lighted is avoided in some forms of boiling rings, &c., by providing a loose collar which can be slipped over the air inlets of the Bunsen tube before applying a light to the burner, and slipped clear of them as soon as the burner is alight. Thus at the moment of lighting, the burner is converted temporarily into one of the non-atmospheric type, and after the flame has thus been established at the head or ring of the burner, the internal air-supply is started by removing the loose collar from the air inlets, and the flame is thus made atmospheric. In these conditions it does not travel backwards to the nipple. In other heating burners it is generally necessary to turn on the gas tap a few seconds before applying a light to the burner or ring or stove; the gas streaming through the mixing tube then fills it with acetylene and air mixed in the proper working proportions, and when the light is applied, there is no explosion in the mixing tube, or striking-back of the flame to the nipple.

Single or two-burner gas rings for boiling purposes, or for heating cooking ovens, known as the "La Belle," made by Falk Stadelmann and Co., Ltd., of London, may be used at as low a gas pressure as 2 inches, though they give better results at 3 inches, which is their normal working pressure. The gas-inlet nozzle or nipple of the burner is set within a spherical bulb in which are four air inlets. The mixing tube which is placed at a proper distance in front of the nipple, is proportioned to the rate of flow of the gas and air, and contains a mixing chamber with a baffling pillar to further their admixture. A fine wire gauze insertion serves to prevent striking-back of the flame. A "La Belle" boiling ring consumes at 3 inches pressure about 48 litres or 1.7 cubic feet of acetylene per hour.

ACETYLENE MOTORS.--The question as to the feasibility of developing "power" from acetylene, i.e., of running an engine by means of the gas, may be answered in essentially identical terms. Specially designed gas-engines of 1, 3, 6, or even 10 h.p. work perfectly with acetylene, and such motors are in regular employment in numerous situations, more particularly for pumping water to feed the generators of a large village acetylene installation. Acetylene is not an economical source of power, partly for the theoretical reason that it is a richer fuel even than coal-gas, and gas-engines would appear usually to be more efficient as the fuel they burn is poorer in calorific intensity, i.e., in heating power (which is explosive power) per unit of volume. The richer, or more concentrated, any fuel in, the more rapidly does the explosion in a mixture of that fuel with air proceed, because a rich fuel contains a smaller proportion of non-inflammable gases which tend to retard explosion than a poor one; and, in reason, a gas-engine works better the more slowly the mixture of gas and air with which it is fed explodes. Still, by properly designing the ports of a gas-engine cylinder, so that the normal amount of compression of the charge and of expansion of the exploded mixture which best suit coal-gas are modified to suit acetylene, satisfactory engines can be constructed; and wherever an acetylene installation for light exists, it becomes a mere question of expediency whether the same fuel shall not be used to develop power, say, for pumping up the water required in a large country house, instead of employing hand labour, or the cheaper hot-air or petroleum motor. Taking the mean of the results obtained by numerous investigators, it appears that 1 h.p.-hour can be obtained for a consumption of 200 litres of acetylene; whence it may be calculated that that amount of energy costs about 3d. for gas only, neglecting upkeep, lubricating material (which would be relatively expensive) and interest, &c.

Acetylene Blowpipes--The design of a satisfactory blowpipe for use with acetylene had at first proved a matter of some difficulty, since the jet, like that of an ordinary self-luminous burner, usually exhibited a tendency to become choked with carbonaceous growths. But when acetylene had become available for various purposes at considerable pressure, after compression into porous matter as described in Chapter XI, the troubles were soon overcome; and a new form of blowpipe was constructed in which acetylene was consumed under pressure in conjunction with oxygen. The temperature given by this apparatus exceeds that of the familiar oxy- hydrogen blowpipe, because the actual combustible material is carbon instead of hydrogen. When 2 atoms of hydrogen unite with 1 of oxygen to form 1 molecule of gaseous water, about 59 large calories are evolved, and when 1 atom of solid amorphous carbon unites with 2 atoms of oxygen to form 1 molecule of carbon dioxide, 97.3 calories are evolved. In both cases, however, the heat attainable is limited by the fact that at certain temperatures hydrogen and oxygen refuse to combine to form water, and carbon and oxygen refuse to form carbon dioxide--in other words, water vapour and carbon dioxide dissociate and absorb heat in the process at certain moderately elevated temperatures. But when 1 atom of solid amorphous carbon unites with 1 atom of oxygen to form carbon monoxide, 29.1 [Footnote: Cf. Chapter VI., page 185.] large calories are produced, and carbon monoxide is capable of existence at much higher temperatures than either carbon dioxide or water vapour. In any gaseous hydrocarbon, again, the carbon exists in the gaseous state, and when 1 atom of the hypothetical gaseous carbon combines with 1 atom of oxygen to produce 1 molecule of carbon monoxide, 68.2 large calories are evolved. Thus while solid amorphous carbon emits more heat than a chemically equivalent quantity of hydrogen provided it is enabled to combine with its higher proportion of oxygen, it emits less if only carbon monoxide is formed; but a higher temperature can be attained in the latter case, because the carbon monoxide is more permanent or stable. Gaseous carbon, on the other hand, emits more heat than an equivalent quantity of hydrogen, [Footnote: In a blowpipe flame hydrogen can only burn to gaseous, not liquid, water.] even when it is only converted into the monoxide. In other words, a gaseous fuel which consists of hydrogen alone can only yield that temperature as a maximum at which the speed of the dissociation of the water vapour reaches that of the oxidation of the hydrogen; and were carbon dioxide the only oxide of carbon, a similar state of affairs would be ultimately reached in the flame of a carbonaceous gas. But since in the latter case the carbon dioxide does not tend to dissociate completely, but only to lose one atom of oxygen, above the limiting temperature for the formation of carbon dioxide, carbon monoxide is still produced, because there is less dissociating force opposed to its formation. Thus at ordinary temperatures the heat of combustion of acetylene is 315.7 calories; but at temperatures where water vapour and carbon dioxide no longer exist, there is lost to that quantity of 315.7 calories the heat of combustion of hydrogen (69.0) and twice that of carbon monoxide (68.2 x 2 = 136.4); so that above those critical temperatures, the heat of combustion of acetylene is only 315.7 - (69.0 + 136.4) = 110.3. [Footnote: When the heat of combustion of acetylene is quoted as 315.7 calories, it is understood that the water formed is condensed into the liquid state. If the water remains gaseous, as it must do in a flame, the heat of formation is reduced by about 10 calories. This does not affect the above calculation, because the heat of combustion of hydrogen when the water remains gaseous is similarly 10 calories less than 69, i.e., 59, as mentioned above in the text. Deleting the heat of liquefaction of water, the calculation referred to becomes 305.7 - (59.0 + l36.4) = 110.3 as before.] This value of 110.3 calories is clearly made up of the heat of formation of acetylene itself, and twice the heat of conversion of carbon into carbon monoxide, i.e., for diamond carbon, 58.1 + 26.1 x 2 = 110.3; or for amorphous carbon, 52.1 + 29.1 x 2 = 110.3. From the foregoing considerations, it may be inferred that the acetylene-oxygen blowpipe can be regarded as a device for burning gaseous carbon in oxygen; but were it possible to obtain carbon in the state of gas and so to lead it into a blowpipe, the acetylene apparatus should still be more powerful, because in it the temperature would be raised, not only by the heat of formation of carbon monoxide, but also by the heat attendant upon the dissociation of the acetylene which yields the carbon.

Acetylene requires 2.5 volumes of oxygen to burn it completely; but in the construction of an acetylene-oxygen blowpipe the proportion of oxygen is kept below this figure, viz., at 1.1 to 1.8 volumes, so that the deficiency is left to be made up from the surrounding air. Thus at the jet of the blowpipe the acetylene dissociates and its carbon is oxidised, at first no doubt to carbon monoxide only, but afterwards to carbon dioxide; and round the flame of the gaseous carbon is a comparatively cool, though absolutely very hot jacket of hydrogen burning to water vapour in a mixture of oxygen and air, which protects the inner zone from loss of heat. As just explained, theoretical grounds support the conclusions at which Fouché has arrived, viz., that the temperature of the acetylene-oxygen blowpipe flame is above that at which hydrogen will combine with oxygen to form water, and that it can only be exceeded by those found in a powerful electric furnace. As the hydrogen dissociated from the acetylene remains temporarily in the free state, the flame of the acetylene blowpipe, possesses strong reducing powers; and this, coupled probably with an intensity of heat which is practically otherwise unattainable, except by the aid of a high-tension electric current, should make the acetylene-oxygen blowpipe a most useful piece of apparatus for a large variety of metallurgical, chemical, and physical operations. In Fouché's earliest attempts to design an acetylene blowpipe, the gas was first saturated with a combustible vapour, such as that of petroleum spirit or ether, and the mixture was consumed with a blast of oxygen in an ordinary coal-gas blow-pipe. The apparatus worked fairly well, but gave a flame of varying character; it was capable of fusing iron, raised a pencil of lime to a more brilliant degree of incandescence than the eth-oxygen burner, and did not deposit carbon at the jet. The matter, however, was not pursued, as the blowpipe fed with undiluted acetylene took its place. The second apparatus constructed by Fouché was the high-pressure blowpipe, the theoretical aspect of which has already been studied. In this, acetylene passing through a water-seal from a cylinder where it is stored as a solution in acetone (cf. Chapter XI.), and oxygen coming from another cylinder, are each allowed to enter the blowpipe at a pressure of 118 to 157 inches of water column (i.e., 8.7 to 11.6 inches of mercury; 4.2 to 5.7 lb. per square inch, or 0.3 to 0.4 atmosphere). The gases mix in a chamber tightly packed with porous matter such as that which is employed in the original acetylene reservoir, and finally issue from a jet having a diameter of 1 millimetre at the necessary speed of 100 to 150 metres per second. Finding, however, that the need for having the acetylene under pressure somewhat limited the sphere of usefulness of his apparatus, Fouché finally designed a low-pressure blowpipe, in which only the oxygen requires to be in a state of compression, while the acetylene is drawn directly from any generator of the ordinary pattern that does not yield a gas contaminated with air. The oxygen passes through a reducing valve to lower the pressure under which it stands in the cylinder to that of 1 or 1.5 effective atmosphere, this amount being necessary to inject the acetylene and to give the previously mentioned speed of escape from the blowpipe orifice. The acetylene is led through a system of long narrow tubes to prevent it firing-back.

AUTOGENOUS SOLDERING AND WELDING.--The blowpipe is suitable for the welding and for the autogenous soldering or "burning" of wrought or cast iron, steel, or copper. An apparatus consuming from 600 to 1000 litres of acetylene per hour yields a flame whose inner zone is 10 to 15 millimetres long, and 3 to 4 millimetres in diameter; it is sufficiently powerful to burn iron sheets 8 to 9 millimetres thick. By increasing the supply of acetylene in proportion to that of the oxygen, the tip of the inner zone becomes strongly luminous, and the flame then tends to carburise iron; when the gases are so adjusted that this tip just disappears, the flame is at its best for heating iron and steel. The consumption of acetylene is about 75 litres per hour for each millimetre of thickness in the sheet treated, and the normal consumption of oxygen is 1.7 times as much; a joint 6 metres long can be burnt in 1 millimetre plate per hour, and one of 1.5 metres in 10 millimetre plate. In certain cases it is found economical to raise the metal to dull redness by other means, say with a portable forge of the usual description, or with a blowpipe consuming coal-gas and air. There are other forms of low- pressure blowpipe besides the Fouché, in some of which the oxygen also is supplied at low pressure. Apart from the use of cylinders of dissolved acetylene, which are extremely convenient and practically indispensable when the blowpipe has to be applied in confined spaces (as in repairing propeller shafts on ships in situ), acetylene generators are now made by several firms in a convenient transportable form for providing the gas for use in welding or autogenous soldering. It is generally supposed that the metal used as solder in soldering iron or steel by this method must be iron containing only a trifling proportion of carbon (such as Swedish iron), because the carbon of the acetylene carburises the metal, which is heated in the oxy-acetylene flame, and would thereby make ordinary steel too rich in carbon. But the extent to which the metal used is carburised in the flame depends, as has already been indicated, on the proper adjustment of the proportion of oxygen to acetylene. Oxy-acetylene autogenous soldering or welding is applicable to a great variety of work, among which may be mentioned repairs to shafts, locomotive frames, cylinders, and to joints in ships' frames, pipes, boilers, and rails. The use of the process is rapidly extending in engineering works generally. Generators for acetylene soldering or welding must be of ample size to meet the quickly fluctuating demands on them and must be provided with water-seals, and a washer or scrubber and filter capable of arresting all impurities held mechanically in the crude gas, and with a safety vent- pipe terminating in the open at a distance from the work in hand. The generator must be of a type which affords as little after-generation as possible, and should not need recharging while the blowpipe is in use. There should be a main tap on the pipe between the generator and the blowpipe. It does not appear conclusively established that the gas consumed should have been chemically purified, but a purifier of ample size and charged with efficient material is undoubtedly beneficial. The blowpipe must be designed so that it remains sufficiently cool to prevent polymerisation of the acetylene and deposition of the resultant particles of carbon or soot within it.

It is important to remember that if a diluent gas, such as nitrogen, is present, the superior calorific power of acetylene over nearly all gases should avail to keep the temperature of the flame more nearly up to the temperature at which hydrogen and oxygen cease to combine. Hence a blowpipe fed with air and acetylene would give a higher temperature than any ordinary (atmospheric) coal-gas blowpipe, just as, as has been explained in Chapter VI., an ordinary acetylene flame has a higher temperature than a coal-gas flame. It is likely that a blowpipe fed with "Lindé-air" (oxygen diluted with less nitrogen than in the atmosphere) and acetylene would give as high a limelight effect as the oxy-hydrogen or oxy-coal-gas blowpipe.

[CHAPTER X]

CARBURETTED ACETYLENE

Now that atmospheric or Bunsen burners for the consumption of acetylene for use in lighting by the incandescent system and in heating have been so much improved that they seem to be within measurable reach of a state of perfection, there appears to be but little use at the present time for a modified or diluted acetylene which formerly seemed likely to be valuable for heating and certain other purposes. Nevertheless, the facts relating to this so-called carburetted acetylene are in no way traversed by its failure to establish itself as an active competitor with simple acetylene for heating purposes, and since it is conceivable that the advantages which from the theoretical standpoint the carburetted gas undoubtedly possesses in certain directions may ultimately lead to its practical utilisation for special purposes, it has been deemed expedient to continue to give in this work an account of the principles underlying the production and application of carburetted acetylene.