It is of course obvious that the surface of these windmill sails could not be really flat, as in that case the wind blowing against it would merely recoil and exert no power effect. A warp or twist was requisite, that the wind might give a thrust to the sail in passing through the wheel, precisely the reverse action of a screw propeller on a boat.
This twist was known as the “angle of weather” or “bosom,” and the precise amount and form were the subjects of many early abstruse and learned studies. Practice finally settled down to an angle of about 17° at the inner end and about 8° at the outer end of the sail as being the most effective.
The mounting of these huge wheels was a matter of some moment, requiring very heavy construction, and this resulted in the use, as a rule, in all the earlier and medium size mills of a great shaft or log, turned or hewed octagonal, carried by gudgeon bearings, on old blocks of soapstone, or greased oak, or cast iron bearings at either end. Into the outer projecting end, outside the roof, the square ends of the vane shafts or sweeps were mortised and bound with straps and bolts of iron. Later and in the larger mills, and after foundry work was more available, these “great-shafts” were made of iron, giving much better bearings and enabling the sweeps to be bolted into square openings more conveniently. But with all these mills, especially the early simpler forms, there was an enormous loss in dead weight moved and in friction, and it is doubtful whether in most of them 50 per cent of the force of the wind reached the mill stones below for useful work.
There was a popular belief that the wind came down from the heavens above, and that therefore the wheel should “look up” a little, to best meet it; with the result that the shaft of the mill was virtually never set level, as one might suppose, but always with the outer end a little higher than the inner, which angle of uplift varied from 5° to 10°. A very practical result of this was also gotten, in the necessary clearance of the tapering tower by the revolving vanes. For these revolving vanes were something to be respected—a 60-foot wheel, for instance, weighing several tons and having a periphery speed of perhaps 3000 feet a minute, and more than one horse or cow straying into the path of the arms in a mill in operation has been struck and paid the penalty. To guard against that, mills were at times set upon a dais or raised foundation, or fenced in.
The great shaft would have mounted upon it a “great wheel,” from 8 to 12 or 15 feet in diameter, with cog teeth, and these engaged in a pinion or lantern or trundle or wallower wheel, as variously styled, on a vertical shaft, which led to the machinery below, and there, by any suitable and usual gear work of the olden times, whatever grist, saw, grinding, stamping or other machinery was to be driven would be duly operated by the wind power from above.
(C) The Tail Beam or Vane.—The third essential feature of these old mills was the device for keeping the wheel head-on to the wind, for the purpose of securing the fullest amount of power. And this was quite a point, in view of the perpetual shifting of the wind.
The first arrangement was that of a long beam or pole projecting from the rear of the old-time post mill, used precisely like a rudder. When the direction of the wind changed this would be pushed from one side to the other, to steer the post mill structure, pivoted on the post, again into the wind. And in the succeeding tower mills, where only the top or head would be turned, the tail beam principle was continued—as best developed in Holland, where a somewhat elaborately braced and several-membered framework was carried down to a point where it could be reached and moved as the wind shifted. But in Holland the mills became of large size and the weight to be moved was great, so that the old Dutch miller would blow a whistle to summon his hands for help. In later years they made use of a further rig of chains and tackle and a wheel like a pilot’s, which enabled the snubbing around of the vanes and cap to be done far more easily than by pushing by hand alone. This old tail beam is, however, characteristic of the old-time small mill, and many are the tracks, well worn and circular, around the mill that betoken the years of labor of the miller, even if eased by an old cartwheel to carry the end of the beam, as instanced in the well-known old mill at Nantucket and elsewhere.
| Usual tail beam on post mills and hybrid mills. | Tail beam. France, tower mill. |