CHAPTER VIII.
SIR WILLIAM SNOW HARRIS.

In singular contrast with what took place in France, the importance of lightning conductors never created any but the most languid interest in England. Neither the Government, nor any of the scientific bodies of the country, at any time occupied themselves seriously with the question as to how public and private buildings might be best protected against the dangers of thunderstorms; and from the time, a century ago, when the Royal Society half patronised and half spurned the merits of Franklin’s discovery, to this day, the battle of science against ignorance in the matter had to be fought by individuals. With one exception, that of Sir William Snow Harris, it proved no profitable battle to any man; and in his case even, it was only so by accident. Born at Plymouth, in 1792, and educated for the medical profession, he early turned his attention to the subject of electricity and lightning conductors, and more particularly to the use of them in the Royal Navy. Owing to his early surroundings, leading to connection with naval officers, he learnt that the damages caused by lightning to ships of war were very numerous, and most expensive to repair; and having got once hold of these facts, he gave them to the public in the ‘Nautical Magazine,’ but chiefly in pamphlet form, insisting upon the simple remedy of lightning conductors. As usual, the Government lent a deaf ear to the proposal as long as it was possible, and it was only when at length, in 1839, the outcry upon the subject became overwhelming, that a naval commission was appointed ‘to investigate the best method of applying lightning conductors to Her Majesty ships.’ The commission drew up an immense report, filling eighty folio pages of a blue-book, the kernel of which was that, though such protectors in thunderstorms were rather new-fangled things, they might be tried without special harm coming to anybody. Thereupon most of the vessels received lightning conductors, made after designs by Mr. Snow Harris. The indefatigable advocate of conductors had his reward. He was knighted in 1847; he had, at various times, considerable grants from the Government; and he had the final satisfaction of being allowed to design lightning conductors for the new Houses of Parliament. The latter remain the most enduring monument of the only man in this country who ever succeeded in drawing the attention of the public and the Government to the grave subject of lightning conductors. He could not have done so, at least not in the line he took up, had he lived half a century later. With the gradual disappearance of the old wooden ships disappeared also the necessity of lightning conductors for men-of-war. An iron-built vessel, metal-rigged, is a conductor by itself, while as to armour-clad ships of latest design, they are more absolutely protected against lightning even than the famous gilded temple of Solomon at Jerusalem.

In the story of the progress of lightning protection in England, the career of William Snow Harris forms a chapter of no little interest, as showing both the inertness of the administration, as well as of the public, in the most important matters, and the good effects that may result from the persevering energy of a single man. When Mr. Snow Harris began his agitation for lightning conductors, about the year 1820, the ships of the Royal Navy were virtually without them, although they had something supposed to stand in their place. Just sixty years before, in 1762, Dr. William Watson, the indefatigable advocate of Franklin’s discovery, had strongly recommended to Lord Anson, first Lord of the Admiralty, that all men-of-war should have lightning conductors; and his urgent zeal, backed by influential friends, effected that his advice was listened to. Being requested to send in the best design for a ship’s conductor, Dr. Watson did so with alacrity, but, unfortunately, with little wisdom. Knowing little or nothing of ships and their management at sea, the learned member of the Royal Society advised that the lightning conductors for the navy should be constructed of strips of copper rod, one-fourth of an inch in diameter, hooked together every few feet by links, and the whole attached, for more security, to a hempen line, to be hung on to a metal spike on the top of the mast, and from thence to fall down into the sea. In theory, it was not a bad design, but it utterly failed in practice. Evidently, Dr. Watson had never been on board of a large ship in a gale, for had he been, he might have known that it would be next to impossible to keep his chain in its place, exposed as it was to the operation of violent mechanical forces, not to speak of possible bad treatment from indignant sailors, with whose movement in the rigging it interfered. It was a natural consequence of Dr. Watson’s ignorance, that his conductors entirely failed. In most cases the commanders of men-of-war, supplied with the copper-hempen chains, quietly stowed them away in some corner of the ship, with orders to take them out when needed, and it often happened that this was done only after the ship had been struck by lightning. Year after year there came reports of such casualties; and at last they got so numerous as really to attract the attention of the naval authorities. Still, nothing was done until William Snow Harris took up the matter. Sitting in his little cottage at Plymouth, overlooking the sea, the happy thought struck the young medical man, waiting for patients who did not come, that here might be found a profitable as well as useful opening for his activity. He possessed, happily, a few naval friends, ready with counsel and assistance, and so he went to action, fighting for lightning conductors.

The battle, resulting as it did in ultimate victory, was a long one, nevertheless. For many years, all his efforts to induce the British Government to adopt a system of efficient lightning conductors for the Royal Navy remained entirely fruitless; and it was only after he had gained the sympathy of the press, and, through it, of the public, by publishing long lists of the disasters that had befallen the cherished ‘wooden walls of England,’ that at last the closed doors of the Admiralty were opened to him. The lists he furnished were appalling indeed, and enough to impress any minds and open any doors. It was shown by Mr. Snow Harris, from carefully compiled records, based upon official documents, that in the course of forty years—from 1793 to 1832—over 250 ships had suffered from lightning. In 150 cases, the majority of which occurred between the years 1799 and 1815, about 100 main-masts of line-of-battle ships and frigates, with a still larger number of topmasts and smaller spars, together with an immense quantity of stores, were destroyed by lightning. One ship in eight was set on fire in some part of the rigging or sails, and over 200 seamen were either killed or severely disabled. But, formidable as was this account of damage done by lightning, it by no means completed the list of casualties. Mr. Snow Harris gave it as his opinion, on the authority of a great many naval officers with whom he came into contact at Plymouth, that many ships reported officially as ‘missing’ had been struck by lightning and gone to the bottom, with nobody left behind to tell the tale. Thus, from a reference to the log of the line-of-battle ship the ‘Lacedæmonian,’ under the command of Admiral Jackson, it appeared that this man-of-war sailed alongside a frigate, the ‘Peacock,’ on the coast of Georgia, in the summer of 1814, and that the latter suddenly disappeared in a storm of lightning, leaving no trace behind. Again, the ‘Loup Cervier,’ another man-of-war, was last seen off Charlestown, in America, on the evening of a severe thunderstorm, and never heard of again. A famous ship, the ‘Resistance,’ of forty-four guns, was struck by lightning in the Straits of Malacca, and the powder-magazine blowing up, it went to the bottom, only three of the crew reaching the shore, picked up by a passing Malay boat. But for these few survivors, Mr. Snow Harris justly remarked, nothing would have been known of the fate of the vessel, which would have been simply reported as ‘missing’ in the Admiralty lists. It was scarcely to be wondered at that the recital of all these tales of disasters, which might have been prevented by the most ordinary foresight in applying known means of protection against lightning, considerably excited the public mind, so that at last the Government was compelled to act in the direction into which it was impelled by the energetic Plymouth doctor. It was thus that at last, in 1839, the naval commission already referred to was appointed to give counsel as to ‘applying lightning conductors to Her Majesty’s ships.’

Perhaps even this step in advance might not have favoured much the cause pleaded by Mr. Snow Harris, had he not had the good fortune of finding a powerful patron in Sir George Cockburn, one of the Lords of the Admiralty. Sir George, born in London, of Scottish parents, in 1772, had all his life long taken a great interest in scientific pursuits; and the application of conductors especially had interested him much, as he had himself been a witness to frequent damage done to ships under his command by lightning. The ‘Minerva,’ of which he was captain at the blockade of Leghorn, in 1796, had been so struck, and likewise two ships of the flotilla, reducing the French island of Martinique, in 1809, under his direction. Having taken a prominent part in the American War of 1813–14, especially the capture of Washington, Sir George Cockburn retired from active service, and in 1818 was made one of the Lords Commissioners of the Admiralty, immediately after being returned a Member of Parliament for Portsmouth. He henceforth devoted himself more than ever to scientific studies; and, having been elected a Fellow of the Royal Society, got into acquaintance with many of its members, among them with Mr. Snow Harris, whom he came to like on account of his fervid enthusiasm in the cause he was advocating. The acquaintance proved of the highest advantage to the young Plymouth electrician. Before even the naval commission, nominated to give counsel upon the subject of lightning conductors, had given in its report, he was allowed to make trial, on board of several men-of-war, with a system designed by himself, and for which he had taken out a patent. It was not long afterwards that it was officially adopted for all the vessels of the Royal Navy, with, it is needless to say, the greatest pecuniary advantages to the designer.

The system of Mr. Snow Harris for protecting ships against lightning was similar to that suggested by Mr. Henly in 1774. Instead of hanging dangling chains from the top of the rigging into the water, he nailed on to the masts and down to the keel, slightly inlaid in the wood, a double set of copper plates, overlying each other in such a manner that the ends of one set were touched by the middle of the other. The plates were four feet in length, two to five inches wide, and one-eighth of an inch thick; they had holes drilled in them at distances of six inches apart, and were secured to the masts and further down by short copper nails. In order to prevent any break in the conductor at the junction of the successive masts, a copper plate was led over the cap, and the continuity preserved at all times by means of a copper hinge or tumbler which fell against the conductor. It was an altogether unobjectionable plan for securing protection against lightning, except that it was liable to fail under imperfect execution. Bad workmanship necessarily was fatal to it. The numerous copper plates had to be very neatly and carefully fastened together to ensure metallic continuity, in the absence of which the electric force might leave the path traced for it, diverging into neighbouring metallic masses, numerous on board ships, such as chains and anchors. It was a most costly system from beginning to end; but as it was, and, for the short time it remained in use, it accomplished all that was desired. Not one of the ships fitted with the conductors designed by Mr. Snow Harris was damaged by lightning, although many were struck, the electric spark in several cases being so powerful as to melt the too fine metal points on the top of the masts. However, the new lightning conductors had not to stand the ordeal of practice for any length of time. One by one the great wooden ships of war, once the pride and glory of England, went into peaceful retirement, to be replaced by iron machines, propelled by steam, metalled from the top of the masts to the water’s edge. It had been one of the recommendations of Mr. Snow Harris to the Admiralty that his copper plates, though expensive at first, would always be worth their money as old metal; and the irony of fate would have it that the conversion of copper into silver was not to be long in waiting. Before the death of the inventor, which occurred in January 1867, his lightning conductors were fast disappearing from the ships on which they were placed. From the windows of his villa at Plymouth, Sir William Snow Harris could see a fleet of ironclads, dispensing with conductors, floating on the sea.

Notwithstanding the short use of his own special naval work which gave him fame, Sir William Snow Harris effected much in the interest of lightning protection in general. He was one of the few men in England who insisted that it was the duty of the Government, as well as of private individuals, to place lightning conductors upon all objects liable to be struck, arguing that it was little less than criminal to neglect such a simple protection against overwhelming danger. It was with some degree of vehemence, though not more perhaps than was requisite, that he stood out against those who objected to conductors because they ‘attracted’ lightning. Such assertion will, at the present day, be regarded as foolish by all persons possessed of the least scientific knowledge; but this was not by any means the case forty or fifty years ago, when even well-educated men denounced conductors. A civil engineer in the service of the British Government, Mr. F. McTaggart, sent to Canada in 1826, recommended openly the pulling-down of all lightning conductors in that colony, and this too in the name of ‘science,’ of which he held himself to be an enlightened disciple. ‘Science,’ wrote Mr. McTaggart, in a book he published,[2] ‘has every cause to dread the thunder-rods of Franklin; they attract destruction, and houses are safer without than with them. Were they able to carry off the fluid they have the means of attracting, then there could be no danger; but this they are by no means able to do.’ Had such reasonings as these been merely the senseless talk of a few individuals, the harm done might not have been great. But it was quite otherwise. Men of power and position, if not of high education, were imbued profoundly with the same ideas as Mr. McTaggart, as evidenced in at least one striking instance, which would be scarcely credible were it not on official record. In the year 1838, the Governor-General and Council of the East India Company actually ordered that all the lightning rods should be removed from their public buildings, including the arsenals and powder magazines, throughout India. The rulers of the great country had come to their decision, as they stated, by the advice of their ‘scientific officers,’ who all apparently shared Mr. McTaggart’s belief of the perils of ‘the thunder rods of Franklin.’ It was partly on the representation of the energetic vindicator of lightning conductors in Plymouth, that the order for their destruction in India was soon countermanded by the authorities in Leadenhall Street, but not before several buildings had been destroyed, among them a large magazine at Dumdum, and a corning-house at Magazine. As often before, so now, lightning itself proved the most powerful advocate of conductors, and in India they were more quickly set up than they had been thrown down.

[2] Three Years in Canada. 8vo. London, 1829.

While designing lightning conductors for the ships of the Royal Navy, Mr. William Snow Harris was called upon likewise by the Secretary of State for War to give advice as to the best protection that might be given to powder magazines and other stores of war material. He did as requested, writing a very lucid paper on the subject, which met with the honour, unique in its way, of being put forward as an official document. To this day there is regularly issued with the ‘Army Circulars’ from the War Office a series of ‘Instructions as to the Applications of Lightning Conductors for the Protection of Powder Magazines, &c.,’ reproducing textually the recommendations of Mr. Snow Harris. These ‘Instructions,’ containing the essence of what he wrote about conductors, and, in fact, the result of all his investigations on the subject, treat the whole ab ovo, and as such deserve quotation. ‘Thunder and lightning,’ Mr. Snow Harris wrote to the War Office, ‘result from the operation of a peculiar natural agency through an interval of the atmosphere contained between the surface of a certain area of clouds, and a corresponding area of the earth’s surface directly opposed to the clouds. It is always to be remembered that the earth’s surface and the clouds are the terminating planes of the action, and that buildings are only assailed by lightning because they are points, as it were in, or form part of, the earth’s surface, in which the whole action below finally vanishes. Hence, buildings, under any circumstances, will be always open to strokes of lightning, and no human power can prevent it, whether having conductors or not, or whether having metals about them or not, as experience shows.’