The thoroughly matter-of-fact way in which Franklin went to work is strikingly exhibited in his own description as to how he came to the conclusion of the oneness of lightning and electricity. In reply to a friend and correspondent, living in South Carolina, who had asked him how he came to such an ‘out-of-the-way idea’ as that of the majestic fire from the cloud-capped firmament being exactly the same with the puny gleam from a stick of glass, rubbed with the sleeve of an old coat, Franklin wrote a highly characteristic letter. ‘I cannot answer your question better,’ he told his friend, ‘than by giving you an extract from the minutes I used to keep of the experiments I made. By this extract you will see that the thought was not so much an out-of-the-way one but that it might have occurred to any electrician. The extract, dated November 7, 1749—a date worth remembrance in the history of scientific progress—was as follows in its entirety:—‘Electrical fluid agrees with lightning, in these particulars: 1. Giving light. 2. The colour of the light. 3. In the crooked direction of the flame. 4. In the swift motion. 5. In being conducted by metals. 6. In the crack, or noise, of the explosion. 7. The subsisting in water, or ice. 8. In the rending of bodies it passes through. 9. In destroying animals. 10. In melting metals. 11. In firing inflammable substances. 12. The sulphurous smell. The electric fluid is attracted by points, and we do not know whether this property is in lightning. But since they agree in all the particulars wherein we can already compare them, is it not probable that they agree likewise in this? Let the experiment be made.


CHAPTER II.
DISCOVERY OF THE LIGHTNING CONDUCTOR.

With that liberality which distinguishes all truly great minds, Benjamin Franklin did not keep his great discoveries to himself, but communicated them to others in the most open-handed manner. Ever since he had commenced his electrical experiments, he had sent the detailed results of them to his London correspondent, Mr. Peter Collinson, for communication to the Royal Society, and he was not even prevented from continuing the labour of writing long letters by the knowledge of the fact that scant notice was taken of them by the Royal Society. The members of this august learned body, with a few honourable exceptions, seemed unable to hide their contempt for what they considered the dabblings in science of a mere tradesman, living in an obscure little town, in a distant colony. Somebody had mentioned in public that this person, of the name of Franklin, was a dealer in rags and goose-feathers, dwelling among money-worshipping Quakers in the City of Brotherly Love: which naturally was productive of great merriment, but detrimental to scientific respect. Thus, although by the influence of Mr. Collinson and some of his friends, the letters from Philadelphia were read before the Royal Society, they met with scarcely any attention, and the members broadly expressed their disdain of them by refusing to allow their insertion in their ‘Transactions.’ Three whole years elapsed in this way, when at length, in the autumn of 1750, Benjamin Franklin reported to Mr. Collinson his researches on the identity of electricity and lightning, together with his ideas that all damage done by the electric fire descending from the clouds upon the earth might be put a stop to by fixing iron rods, with sharp points, to the summit of buildings, which would thus be protected. He added that he himself intended shortly to verify his conclusions by experiments, but that, in the meanwhile, it would be well if others did the same. Never before, perhaps, was a grand idea thrown out to all the world with more munificence of spirit, and with more entire abnegation of the very thought of self.

Franklin’s letter made a great impression upon Mr. Collinson. Anxious to make it public, while persuaded that the Royal Society would give no better reception to it than to the author’s previous communications, he hastened to Mr. Edward Cave, proprietor and editor of the ‘Gentleman’s Magazine,’ and asked him to print it in his publication, the most widely read at the time. A man of quick sense, Mr. Cave, too, saw at once the vast importance of Franklin’s paper, describing his discovery, and readily offered to print it, but recommended that it should be done in pamphlet form, as likely to make the facts even more extensively known than could be the case in his own Magazine. This having been agreed to, there appeared, early in May 1751, a pamphlet with the name of Benjamin Franklin on the front page, and a preface by Dr. Fothergill, entitled, ‘New Experiments and Observations in Electricity, made at Philadelphia, in America.’ It was the most important contribution to science published since the appearance, five-and-thirty years before, of Newton’s ‘Principia.’

Like Newton’s book, that of Franklin was not immediately successful—at least not in England. Not appearing under the patronage of the Royal Society, the supposed fountain-head of all legitimate science, it was looked coldly upon by the public and the critics, and it was only after having been greeted with immense applause in France, that at last something like justice was done to it in England. The great success of Franklin’s little treatise in France was due, in the first instance, to rather accidental circumstances, but was none the less genuine. By a happy chance a copy of the pamphlet printed by Mr. Cave fell into the hands of the Count de Buffon, the greatest naturalist of the age, and whose pre-eminent position was established not only in France, but throughout the whole of Europe. Himself familiar with the English language, he yet thought that it was necessary to have the book immediately translated into French, and he employed for the purpose Professor Dubourg, a literary man of note, well versed in electrical science. Under such favourable auspices, Franklin’s pamphlet, carefully translated, was issued at Paris in the summer of 1751, three or four months after its appearance in London. Its success in France was as immediate as it was great, and the wave of it spread at once over Europe, marked by German, Italian, and Latin translations of the ‘New Experiments.’ For a considerable time nothing was talked of among the upper classes of France but the discoveries in science of the unknown Philadelphia printer, and the king, Louis XV., following the fashion of the day, ordered a course of the electrical experiments, described by Franklin, to be performed before him at St. Germain, in the presence of the whole court.

A rather ludicrous incident, and which gave rise to a great deal of scientific tournamenting, added to the celebrity of Franklin’s little book on the continent of Europe. The greatest of French electricians, Abbé Nollet, a man of acknowledged merit, but inordinately vain, was mystified in believing that the pamphlet which caused such an immense stir at court and among the public was not the production of the obscure man Franklin of Philadelphia, but got up among his enemies in England and France, to rob him of his reputation. With this belief fixed in his mind, he sat down at his desk to write a series of letters intended to demolish the man of Philadelphia, and proving, entirely to his own satisfaction, first, that Franklin did not exist at all; secondly, that he had no right to exist; and thirdly, that all his pretended discoveries were mere dreams. Not long after the publication of his letters, the wrathful Abbé received undoubted proofs from America that at Philadelphia there was a man called Franklin, who himself mildly asserted his right not only to live, but to make experiments in electricity. Poor Abbé Nollet felt his humiliation all the more keenly as holding the post of preceptor in Natural Philosophy to the royal family of France, and he had to suffer from a ‘burst of inextinguishable laughter’ at one of his appearances at court.

If Count de Buffon did great service to electrical science by getting Franklin’s pamphlet translated into French, he did still more by instigating a series of experiments tending to verify the great theory put forward in the pamphlet, that lightning could be drawn from the clouds by means of pointed iron rods. By his prompting, several gentlemen interested in scientific pursuits engaged upon trials to this effect, among them two persons of note, M. Dalibard and M. de Lor. The first-named had the good fortune to be successful, and thereby to hand his name down to posterity. A wealthy man of science, M. Dalibard was in the habit of living, during a part of the year, in a handsome country house situated at Marly-la-Ville, about eighteen miles from Paris, on the road to Pontoise. Marly-la-Ville stands on a high plain, some four hundred feet above the sea-level, and the residence of M. Dalibard being situated on the most elevated part of the ground, it formed an excellent place for experiments, and was chosen as such by Count de Buffon. The garden near the house was selected as the best ground for the experiments. A wooden scaffolding was built up to hold in its midst an iron rod, eighty feet long, and slightly over an inch in diameter. On the top of the rod was fastened a piece of polished steel, sharply pointed, and bronzed to prevent rust. The iron rod entered, five feet from the ground, into another thinner one, running horizontally towards an electrical apparatus, fastened to a table in a kind of sentry-box, erected on purpose for observations. It was M. Dalibard’s intention to make the experiments himself; but almost immediately after the structure in his garden had been completed, he was called by business to Paris, and left the whole in charge of one of his servants, an old soldier, formerly in the French dragoons, Coiffier by name. With true military spirit, Coiffier thought that he ought to spend the greater part of his time in the sentry-box in his master’s garden, and there he sat in the afternoon of Wednesday, May 10, 1752, when a violent thunderstorm drifted over the plain of Marly. Sufficiently instructed by his master what to do under the circumstances, he touched the electrical apparatus with a key, silk-bound at the handle, and to his extreme surprise, sees a flame bursting forth. He touches another time, and there is a second flame bursting forth, stronger than before. Then the old dragoon rushes from his sentry-box—most famous private dragoon that ever lived, born to the high honour of being the first man that ever drew lightning from heaven.

It was not fear that drove the worthy servant of M. Dalibard from his post, but a far better motive. He judged, with the prudence of an old soldier, that the astounding things he had seen required witnesses, in order that his master might not think him an inventor of fairy tales. Accordingly, he hurried to the house of the prior of Marly, M. Raulet, who lived close by, and asked him to behold the marvel of marvels. The prior hesitated not for a moment to go, and, entering the sentry-box, he also drew sparks from the electrical machine. Others of the inhabitants of Marly-la-Ville, seeing the prior run, followed in his wake, notwithstanding the rain was pouring down in streams, and terror was struck among all of them in witnessing the dreaded lightning creep down, serpent-like, but bereft of all its terrors, into the sentry-box, in the centre of which stood the now exulting old dragoon. As soon as the storm was over, the prior insisted upon Coiffier at once saddling a horse, and riding full speed to Paris, to acquaint his master with the great news that lightning had been drawn from the skies by his apparatus at the blessed village of Marly-la-Ville. The obedient dragoon did as advised, and three days after, on May 13, 1752, M. Dalibard startled all the members of the Académie des Sciences of Paris, convoked together in haste, by reading to them a full report of what had taken place in the first great experiment for ascertaining the truth of the suggestions of Benjamin Franklin.