“And then he drew a diall from his poke.”

Watches were first made for carrying in the pocket about 1658.

Because of this literary, scientific, and practical interest in methods of indicating time it is not surprising that Oughtred devoted himself to the mastery and the advancement of methods of time-measurement.

Besides the accounts previously noted, there came from his pen: The Description and Use of the double Horizontall Dyall: Whereby not onely the hower of the day is shewne; but also the Meridian Line is found: And most Astronomical Questions, which may be done by the Globe, are resolved. Invented and written by W. O., London, 1636.

The “Horizontall Dyall” and “Horologicall Ring” appeared again as appendixes to Oughtred’s translation from the French of a book on mathematical recreations.

The fourth French edition of that work appeared in 1627 at Paris, under the title of Recreations mathematiqve, written by “Henry van Etten,” a pseudonym for the French Jesuit Jean Leurechon (1591-1690). English editions appeared in 1633, 1653, and 1674. The full title of the 1653 edition conveys an idea of the contents of the text: Mathematical Recreations, or, A Collection of many Problemes, extracted out of the Ancient and Modern Philosophers, as Secrets and Experiments in Arithmetick, Geometry, Cosmographie, Horologiographie, Astronomie, Navigation, Musick, Opticks, Architecture, Statick, Mechanicks, Chemistry, Water-works, Fire-works, &c. Not vulgarly manifest till now. Written first in Greek and Latin, lately compil’d in French, by Henry Van Etten, and now in English, with the Examinations and Augmentations of divers Modern Mathematicians. Whereunto is added the Description and Use of the Generall Horologicall Ring. And The Double Horizontall Diall. Invented and written by William Oughtred. London, Printed for William Leake, at the Signe of the Crown in Fleet-street, between the two Temple-Gates. MDCLIII.

The graphic solution of spherical triangles by the accurate drawing of the triangles on a sphere and the measurement of the unknown parts in the drawing was explained by Oughtred in a short tract which was published by his son-in-law, Christopher Brookes, under the following title: The Solution of all Sphaerical Triangles both right and oblique By the Planisphaere: Whereby two of the Sphaerical partes sought, are at one position most easily found out. Published with consent of the Author, By Christopher Brookes, Mathematique Instrument-maker, and Manciple of Wadham Colledge, in Oxford.

Brookes says in the preface:

I have oftentimes seen my Reverend friend Mr. W. O. in his resolution of all sphaericall triangles both right and oblique, to use a planisphaere, without the tedious labour of Trigonometry by the ordinary Canons: which planisphaere he had delineated with his own hands, and used in his calculations more than Forty years before.

Interesting as one of our sources from which Oughtred obtained his knowledge of the conic sections is his study of Mydorge. A tract which he wrote thereon was published by Jonas Moore, in his Arithmetick in two books . . . . [containing also] the two first books of Mydorgius his conical sections analyzed by that reverend devine Mr. W. Oughtred, Englished and completed with cuts. London, 1660. Another edition bears the date 1688.