Oughtred maintained his view of the importance of symbols on many different occasions. Thus, in his Circles of Proportion, 1632, p. 20:

This manner of setting downe Theoremes, whether they be Proportions, or Equations, by Symboles or notes of words, is most excellent, artificiall, and doctrinall. Wherefore I earnestly exhort every one, that desireth though but to looke into these noble Sciences Mathematicall, to accustome themselves unto it: and indeede it is easie, being most agreeable to reason, yea even to sence. And out of this working may many singular consectaries be drawne: which without this would, it may be, for ever lye hid.

RIGOROUS THINKING AND THE USE OF INSTRUMENTS

The author’s elevated concept of mathematical study as conducive to rigorous thinking shines through the following extract from his preface to the 1647 Clavis:

. . . . Which Treatise being not written in the usuall synthetical manner, nor with verbous expressions, but in the inventive way of Analitice, and with symboles or notes of things instead of words, seemed unto many very hard; though indeed it was but their owne diffidence, being scared by the newnesse of the delivery; and not any difficulty in the thing it selfe. For this specious and symbolicall manner, neither racketh the memory with multiplicity of words, nor chargeth the phantasie with comparing and laying things together; but plainly presenteth to the eye the whole course and processe of every operation and argumentation.

Now my scope and intent in the first Edition of that my Key was, and in this New Filing, or rather forging of it, is, to reach out to the ingenious lovers of these Sciences, as it were Ariadnes thread, to guide them through the intricate Labyrinth of these studies, and to direct them for the more easie and full understanding of the best and antientest Authors. . . . . That they may not only learn their propositions, which is the highest point of Art that most Students aime at; but also may perceive with what solertiousnesse, by what engines of aequations, Interpretations, Comparations, Reductions, and Disquisitions, those antient Worthies have beautified, enlarged, and first found out this most excellent Science. . . . . Lastly, by framing like questions problematically, and in a way of Analysis, as if they were already done, resolving them into their principles, I sought out reasons and means whereby they might be effected. And by this course of practice, not without long time, and much industry, I found out this way for the helpe and facilitation of Art.

Still greater emphasis upon rigorous thinking in mathematics is laid in the preface to the Circles of Proportion and in some parts of his Apologeticall Epistle against Delamain. In that preface William Forster quotes the reply of Oughtred to the question how he (Oughtred) had for so many years concealed his invention of the slide rule from himself (Forster) whom he had taught so many other things. The reply was:

That the true way of Art is not by Instruments, but by Demonstration: and that it is a preposterous course of vulgar Teachers, to begin with Instruments, and not with the Sciences, and so in-stead of Artists, to make their Scholers only doers of tricks, and as it were Iuglers: to the despite of Art, losse of previous time, and betraying of willing and industrious wits, vnto ignorance, and idlenesse. That the vse of Instruments is indeed excellent, if a man be an Artist: but contemptible, being set and opposed to Art. And lastly, that he meant to commend to me, the skill of Instruments, but first he would haue me well instructed in the Sciences.”

Delamain took a different view, arguing that instruments might very well be placed in the hands of pupils from the start. At the time of this controversy Delamain supported himself by teaching mathematics in London and he advertised his ability to give instruction in mathematics, including the use of instruments. Delamain brought the charge against Oughtred of unjustly calling “many of the [British] Nobility and Gentry doers of trickes and juglers.” To this Oughtred replies:

As I did to Delamain and to some others, so I did to William Forster: I freely gave him my helpe and instruction in these faculties: only this was the difference, I had the very first moulding (as I may say) of this latter: But Delamain was already corrupted with doring upon Instruments, and quite lost from ever being made an Artist: I suffered not William Forster for some time so much as speake of any Instrument, except only the Globe it selfe; and to explicate, and worke the questions of the Sphaere, by the way of the Analemma: which also himselfe did describe for the present occasion. And this my restraint from such pleasing avocations, and holding him to the strictnesse of percept, brought forth this fruit, that in short time, even by his owne skill, he could not onely use any Instrument he should see, but also was able to delineate the like, and devise others.[143]

As representing Delamain’s views, we make the following selection from his Grammelogia (London, about 1633), the part near the end of the book and bearing the title, “In the behalfe of vulgar Teachers and others,” where Delamain refers to Oughtred’s charge that the scholars of “vulgar” teachers are “doers of tricks, as it were iuglers.” Delamain says: