CHAPTER V

PATTERNS: THEIR OUTLINES AND CORES

The patterns on the thumb and fingers were first discussed at length by Purkenje in 1823, in a University Thesis or Commentatio. I have translated the part that chiefly concerns us, and appended it to this chapter together with his corresponding illustrations. Subsequent writers have adopted his standard types, diminishing or adding to their number as the case may be, and guided as he had been, by the superficial appearance of the lineations.

In my earlier trials some three years ago, an attempt at classification was made upon that same principle, when the experience gained was instructive. It had seemed best to limit them to the prints of a single digit, and the thumb was selected. I collected enough specimens to fill fourteen sheets, containing in the aggregate 504 prints of right thumbs, arranged in six lines and six columns (6 × 6 × 14 = 504), and another set of fourteen sheets containing the corresponding left thumbs. Then, for the greater convenience of study these sheets were photographed, and enlargements upon paper to about two and a half times the natural size made from the negatives. The enlargements of the right thumb prints were reversed, in order to make them comparable on equal terms with those of the left. The sheets were then cut up into rectangles about the size of small playing-cards, each of which contained a single print, and the register number in my catalogue was entered on its back, together with the letters L. for left, or R.R. for reversed right, as the case might be.

On trying to sort them according to Purkenje’s standards, I failed completely, and many analogous plans were attempted without success. Next I endeavoured to sort the patterns into groups so that the central pattern of each group should differ by a unit of “equally discernible difference” from the central patterns of the adjacent groups, proposing to adopt those central patterns as standards of reference. After tedious re-sortings, some sixty standards were provisionally selected, and the whole laid by for a few days. On returning to the work with a fresh mind, it was painful to find how greatly my judgment had changed in the interim, and how faulty a classification that seemed tolerably good a week before, looked then. Moreover, I suffered the shame and humiliation of discovering that the identity of certain duplicates had been overlooked, and that one print had been mistaken for another. Repeated trials of the same kind made it certain that finality would never be reached by the path hitherto pursued.

On considering the causes of these doubts and blunders, different influences were found to produce them, any one of which was sufficient by itself to give rise to serious uncertainty. A complex pattern is capable of suggesting various readings, as the figuring on a wall-paper may suggest a variety of forms and faces to those who have such fancies. The number of illusive renderings of prints taken from the same finger, is greatly increased by such trifles as the relative breadths of their respective lineations and the differences in their depths of tint. The ridges themselves are soft in substance, and of various heights, so that a small difference in the pressure applied, or in the quantity of ink used, may considerably affect the width of the lines and the darkness of portions of the print. Certain ridges may thereby catch the attention at one time, though not at others, and give a bias to some false conception of the pattern. Again, it seldom happens that different impressions of the same digit are printed from exactly the same part of it, consequently the portion of the pattern that supplies the dominant character will often be quite different in the two prints. Hence the eye is apt to be deceived when it is guided merely by the general appearance. A third cause of error is still more serious; it is that patterns, especially those of a spiral form, may be apparently similar, yet fundamentally unlike, the unaided eye being frequently unable to analyse them and to discern real differences. Besides all this, the judgment is distracted by the mere size of the pattern, which catches the attention at once, and by other secondary matters such as the number of turns in the whorled patterns, and the relative dimensions of their different parts. The first need to be satisfied, before it could become possible to base the classification upon a more sure foundation than that of general appearance, was to establish a well-defined point or points of reference in the patterns. This was done by utilising the centres of the one or two triangular plots (see [Plate 4], Fig. 8, 2, 3, 4) which are found in the great majority of patterns, and whose existence was pointed out by Purkenje, but not their more remote cause, which is as follows:

The ridges, as was shown in the diagram ([Plate 3]) of the palm of the hand, run athwart the fingers in rudely parallel lines up to the last joint, and if it were not for the finger-nail, would apparently continue parallel up to the extreme finger-tip. But the presence of the nail disturbs their parallelism and squeezes them downwards on both sides of the finger. (See Fig. 8, 2.) Consequently, the ridges that run close to the tip are greatly arched, those that successively follow are gradually less arched until, in some cases, all signs of the arch disappear at about the level of the first joint (Fig. 8, 1). Usually, however, this gradual transition from an arch to a straight line fails to be carried out, causing a break in the orderly sequence, and a consequent interspace (Fig. 8, 2). The topmost boundary of the interspace is formed by the lowermost arch, and its lowermost boundary by the topmost straight ridge. But an equally large number of ducts exist within the interspace, as are to be found in adjacent areas of equal size, whose mouths require to be supported and connected. This is effected by the interpolation of an independent system of ridges arranged in loops (Fig. 8, 3; also [Plate 5], Fig. 9, a, f), or in scrolls (Fig. 8, 4; also Fig. 9, g, h), and this interpolated system forms the “pattern.” Now the existence of an interspace implies the divergence of two previously adjacent ridges (Fig. 8, 2), in order to embrace it. Just in front of the place where the divergence begins, and before the sweep of the pattern is reached, there are usually one or more very short cross-ridges. Their effect is to complete the enclosure of the minute triangular plot in question. Where there is a plot on both sides of the finger, the line that connects them (Fig. 8, 4) serves as a base line whereby the pattern may be oriented, and the position of any point roughly charted. Where there is a plot on only one side of the finger (Fig. 8, 3), the pattern has almost necessarily an axis, which serves for orientation, and the pattern can still be charted, though on a different principle, by dropping a perpendicular from the plot on to the axis, in the way there shown.

These plots form corner-stones to my system of outlining and subsequent classification; it is therefore extremely important that a sufficient area of the finger should be printed to include them. This can always be done by slightly rolling the finger ([p. 39]), the result being, in the language of map-makers, a cylindrical projection of the finger (see [Plate 5], Fig. 9, a-h). Large as these impressions look, they are of the natural size, taken from ordinary thumbs.