The prints in the two plates cover the intervals from childhood to boyhood, from boyhood to early manhood, from manhood to about the age of 60, and another set—that of Sir W. G.—covers the interval from 67 to 80. This is clearly expressed by the diagram ([Plate 15], Fig. 23). As there is no sign, except in one case, of change during any one of these four intervals, which together almost wholly cover the ordinary life of man, we are justified in inferring that between birth and death there is absolutely no change in, say, 699 out of 700 of the numerous characteristics in the markings of the fingers of the same person, such as can be impressed by them whenever it is desirable to do so. Neither can there be any change after death, up to the time when the skin perishes through decomposition; for example, the marks on the fingers of many Egyptian mummies, and on the paws of stuffed monkeys, still remain legible. Very good evidence and careful inquiry is thus seen to justify the popular idea of the persistence of finger markings, that has hitherto been too rashly jumped at, and which wrongly ascribed the persistence to the general appearance of the pattern, rather than to the minutiæ it contains. There appear to be no external bodily characteristics, other than deep scars and tattoo marks, comparable in their persistence to these markings, whether they be on the finger, on other parts of the palmar surface of the hand, or on the sole of the foot. At the same time they are out of all proportion more numerous than any other measurable features; about thirty-five of them are situated on the bulb of each of the ten digits, in addition to more than 100 on the ball of the thumb, which has not one-fifth of the superficies of the rest of the palmar surface. The total number of points suitable for comparison on the two hands must therefore be not less than one thousand and nearer to two; an estimate which I verified by a rough count on my own hand; similarly in respect to the feet. The dimensions of the limbs and body alter in the course of growth and decay; the colour, quantity, and quality of the hair, the tint and quality of the skin, the number and set of the teeth, the expression of the features, the gestures, the handwriting, even the eye-colour, change after many years. There seems no persistence in the visible parts of the body, except in these minute and hitherto too much disregarded ridges.

It must be emphasised that it is in the minutiæ, and not in the measured dimensions of any portion of the pattern, that this remarkable persistence is observed, not even if the measurements be made in units of a ridge-interval. The pattern grows simultaneously with the finger, and its proportions vary with its fatness, leanness, usage, gouty deformation, or age. But, though the pattern as a whole may become considerably altered in length or breadth, the number of ridges, their embranchments, and other minutiæ remain unchanged. So it is with the pattern on a piece of lace. The piece as a whole may be stretched in this way, or shrunk in that, and its outline altogether altered; nevertheless every one of the component threads, and every knot in every thread, can easily be traced and identified in both. Therefore, in speaking of the persistence of the marks on the finger, the phrase must be taken to apply principally to the minutiæ, and to the general character of the pattern; not to the measure of its length, breadth, or other diameter; these being no more constant than the stature, or any other of the ordinary anthropometric data.


CHAPTER VII

EVIDENTIAL VALUE

The object of this chapter is to give an approximate numerical idea of the value of finger prints as a means of Personal Identification. Though the estimates that will be made are professedly and obviously far below the truth, they are amply sufficient to prove that the evidence afforded by finger prints may be trusted in a most remarkable degree.

Our problem is this: given two finger prints, which are alike in their minutiæ, what is the chance that they were made by different persons?

The first attempt at comparing two finger prints would be directed to a rough general examination of their respective patterns. If they do not agree in being arches, loops, or whorls, there can be no doubt that the prints are those of different fingers, neither can there be doubt when they are distinct forms of the same general class. But to agree thus far goes only a short way towards establishing identity, for the number of patterns that are promptly distinguishable from one another is not large. My earlier inquiries showed this, when endeavouring to sort the prints of 1000 thumbs into groups that differed each from the rest by an “equally discernible” interval. While the attempt, as already mentioned, was not successful in its main object, it showed that nearly all the collection could be sorted into 100 groups, in each of which the prints had a fairly near resemblance. Moreover, twelve or fifteen of the groups referred to different varieties of the loop; and as two-thirds of all the prints are loops, two-thirds of the 1000 specimens fell into twelve or fifteen groups. The chance that an unseen pattern is some particular variety of loop, is therefore compounded of 2 to 3 against its being a loop at all, and of 1 to 12 or 15, as the case may be, against its being the specified kind of loop. This makes an adverse chance of only 2 to 36, or to 45, say as 2 to 40, or as 1 to 20. This very rude calculation suffices to show that on the average, no great reliance can be placed on a general resemblance in the appearance of two finger prints, as a proof that they were made by the same finger, though the obvious disagreement of two prints is conclusive evidence that they were made by different fingers.

When we proceed to a much more careful comparison, and collate successively the numerous minutiæ, their coincidence throughout would be an evidence of identity, whose value we will now try to appraise.