Table XXXI.
| No. of ridges in AH. | No. of cases reduced to per cents. | KL — NB | No. of cases reduced to per cents. | AN — AH | No. of cases reduced to per cents. | |||
| Right. | Left. | Right. | Left. | Right. | Left. | |||
| 171 cases. | 166 cases. | 149 cases. | 140 cases. | 176 cases. | 163 cases. | |||
| 1 | 1 | ... | 0·3-0·4 | 3 | 2 | 0·1-0·2 | 2 | 1 |
| 2 | 2 | 1 | 0·5-0·6 | 8 | 11 | 0·3-0·4 | 7 | 3 |
| 3 | 2 | 3 | 0·7-0·8 | 9 | 14 | 0·5-0·6 | 11 | 3 |
| 4 | 2 | 5 | 0·9-1·0 | 21 | 18 | 0·7-0·8 | 9 | 9 |
| 5 | 3 | 5 | 1·1-1·2 | 16 | 23 | 0·9-1·0 | 22 | 15 |
| 6 | 4 | 18 | 1·3-1·4 | 24 | 7 | 1·1-1·2 | 15 | 13 |
| 7 | 8 | 14 | 1·5-1·6 | 8 | 10 | 1·3-1·4 | 12 | 12 |
| 8 | 8 | 16 | 1·7-1·8 | 3 | 6 | 1·5-1·6 | 11 | 14 |
| 9 | 11 | 10 | 1·9-2·0 | 5 | 6 | 1·7-1·8 | 8 | 10 |
| 10 | 9 | 8 | 2·1-2·2 | 1 | 1 | 1·9-2·0 | 1 | 5 |
| 11 | 14 | 10 | above | 2 | 2 | 2·1-2·2 | ... | ... |
| 12 | 11 | 8 | ... | ... | ... | 2·3-2·4 | 1 | 6 |
| 13 | 10 | 2 | ... | ... | ... | 2·5-2·6 | ... | 4 |
| 14 | 7 | ... | ... | ... | ... | 2·7-2·8 | ... | 3 |
| 15 | 6 | ... | ... | ... | ... | 2·9-3·0 | ... | 1 |
| above | 2 | ... | ... | ... | ... | above | 1 | 1 |
| 100 | 100 | 100 | 100 | 100 | 100 | |||
Table XXXII.
| Abscissae reckoned in centesimal parts of the interval between the limits of the scheme. 0° to 100°. | Ordinates to the six schemes of Distribution, being the ordinates drawn from the base of each scheme at selected centesimal divisions of the base. | ||||||||||||
| No. of ridges in AH. | Values of KL/NB | Values of AN/AH | |||||||||||
| Right. | Left. | Right. | Left. | Right. | Left. | ||||||||
| Observed. | Calculated from M=10·4 p.e.=2·3 | Observed. | Calculated from M=7·8 p.e.=1·9 | Observed. | Calculated from M=1·15 p.e.=0·25 | Observed. | Calculated from M=1·10 p.e.=0·31 | Observed. | Calculated from M=1·08 p.e.=0·30 | Observed. | Calculated from M=1·36 p.e.=0·36 | ||
| 5 | 3·8 | 4·8 | 3·8 | 3·2 | 0·54 | 0·54 | 0·49 | 0·35 | 0·36 | 0·32 | 0·58 | 0·48 | |
| 10 | 5·5 | 6·0 | 4·8 | 4·2 | 0·64 | 0·67 | 0·59 | 0·51 | 0·50 | 0·48 | 0·74 | 0·68 | |
| 20 | 7·3 | 7·5 | 5·8 | 5·4 | 0·85 | 0·84 | 0·78 | 0·71 | 0·66 | 0·67 | 0·96 | 0·91 | |
| 25 | 7·9 | 8·1 | 6·1 | 5·9 | 0·91 | 0·90 | 0·83 | 0·79 | 0·79 | 0·75 | 1·00 | l·00 | |
| 30 | 8·5 | 8·6 | 6·4 | 6·3 | 0·99 | 0·95 | 0·89 | 0·86 | 0·87 | 0·82 | 1·04 | 1·08 | |
| 40 | 9·5 | 9·5 | 7·1 | 7·4 | 1·05 | 1·05 | 1·00 | 0·98 | 0·98 | 0·93 | 1·21 | 1·22 | |
| 50 | 10·5 | 10·4 | 7·8 | 7·8 | 1·15 | 1·15 | 1·10 | 1·10 | 1·04 | 1·05 | 1·37 | 1·36 | |
| 60 | 11·3 | 11·3 | 8·4 | 8·2 | 1·29 | 1·25 | 1·18 | 1·22 | 1·18 | 1·17 | 1·48 | 1·50 | |
| 70 | 12·1 | 12·2 | 9·3 | 9·3 | 1·33 | 1·35 | 1·32 | 1·34 | 1·31 | 1·28 | 1·66 | 1·64 | |
| 75 | 12·5 | 12·7 | 9·9 | 9·7 | 1·41 | 1·40 | 1·46 | 1·41 | 1·39 | 1·35 | 1·73 | 1·72 | |
| 80 | 13·0 | 13·3 | 11·0 | 10·2 | 1·45 | 1·46 | 1·53 | 1·49 | 1·48 | 1·43 | 1·90 | 2·81 | |
| 90 | 14·3 | 14·8 | 11·5 | 11·4 | 1·77 | 1·63 | 1·73 | 1·69 | 1·69 | 1·62 | 2·23 | 2·04 | |
| 95 | 15·0 | 16·0 | 12·2 | 12·2 | 2·00 | 1·76 | 1·80 | 1·85 | 1·81 | 1·78 | 2·48 | 2·24 | |
Table XXXIII.
| Abscissae reckoned in centesimal parts of the interval between the limits of the curve. 0° to 100°. | Ordinates to the six curves of distribution, drawn from the axis of each curve at selected centesimal divisions of it. | Observed. | Calculated. | ||||||
They are here reduced to a common measure, by dividing the observed deviations in each series by the probable error appropriate to the series, and multiplying by 100. For the values of M, whence the deviations are measured, and for those of the corresponding probable error, see the headings to the columns in Table II. | Mean of the corresponding ordinates in the six curves after reduction to the common scale of p.e. = 100. 965 observations in all. | Ordinates to the normal curve of distribution, probable error = 100. | |||||||
| No. of Ridges in AH. | Values of KL/NB | Values of AN/AH | |||||||
| Right. | Left. | Right. | Left. | Right. | Left. | ||||
| 5 | -291 | -211 | -244 | -196 | -230 | -217 | -231 | -244 | |
| 10 | -213 | -158 | -204 | -164 | -183 | -172 | -182 | -190 | |
| 20 | -135 | -105 | -120 | -103 | -130 | -111 | -117 | -125 | |
| (P)25 | -109 | - 84 | - 92 | - 87 | - 87 | -100 | - 93 | -100 | |
| 30 | - 83 | - 74 | - 64 | - 68 | - 60 | - 89 | - 73 | - 78 | |
| 40 | - 44 | - 37 | - 44 | - 31 | - 23 | - 42 | - 37 | - 38 | |
| (M) 50 | + 4 | 0 | 0 | 0 | 0 | 0 | + 1 | 0 | |
| 60 | + 39 | + 31 | + 56 | + 23 | + 43 | + 33 | + 38 | + 38 | |
| 70 | + 74 | + 79 | + 72 | + 68 | + 87 | + 83 | + 77 | + 78 | |
| (Q) 75 | + 91 | +116 | +104 | +116 | +113 | +103 | +107 | +100 | |
| 80 | +113 | +168 | +120 | +138 | +143 | +150 | +139 | +125 | |
| 90 | +170 | +200 | +248 | +203 | +213 | +242 | +213 | +190 | |
| 95 | +200 | +231 | +340 | +225 | +253 | +311 | +260 | +244 | |
Table XXXII. is derived from Table XXXI. by a process described by myself in many publications, more especially in Natural Inheritance, and will now be assumed as understood. Each of the six pairs of columns contain, side by side, the Observed and Calculated values of one of the six series, the data on which the calculations were made being also entered at the top. The calculated figures agree with the observed ones very respectably throughout, as can be judged even by those who are ignorant of the principles of the method. Let us take the value that 10 per cent of each of the six series falls short of, and 90 per cent exceed; they are entered in the line opposite 10; we find for the six pairs successively,