Right-angles to lay out.--A triangle whose sides are as 3, 4, and 5, must be a right-angled one, since 5 x 5 = 3 x 3 + 4 x 4; therefore we can find a right-angle very simply by means of a measuring-tape. We take a length of twelve feet, yards, fathoms, or whatever it may be, and peg its two ends, side by side, to the ground. Peg No. 2 is driven in at the third division, and peg No. 3 is held at the seventh division of the cord, which is stretched out till it becomes taut; then the peg is driven in. These three pegs will form the corners of a right-angled triangle; peg No. 2 being situated at the right-angle.
Proximate Arcs.--
1 degree subtends, at a distance of 1 statute mile, 90 feet.
1' subtends, at a distance of 1 statute mile, 18 inches.
1' subtends at a distance of 100 yards, 1 inch.
1" of latitude on the earth's surface is 100 feet.
30' is subtended by the diameter of either the sun or the moon.
Angles measured by their Chords.--The number of degrees contained by any given angle, may be ascertained without a protractor or other angular instrument, by means of a Table of Chords. So, also, may any required angle be protracted on paper, through the same simple means. In the first instance, draw a circle on paper with its centre at the apex of the angle and with a radius of 1000, next measure the distance between the points where the circle is cut by the two lines that enclose the angle. Lastly look for that distance (which is the chord of the angle) in the annexed table, where the corresponding number of degrees will be found, where the corresponding number of degrees will be found. If it be desired to protract a given angle, the same operation is to be performed in a converse sense. I need hardly mention that the chord of an angle is the same thing as twice the sine of half that angle; but as tables of natural sines are not now-a-days commonly to be met with, I have thought it well worth while to give a Table of Chords. When a traveller, who is unprovided with regular instruments, wishes to triangulate, or when having taken some bearings but having no protractor, he wishes to lay them down upon his map, this little table will prove of very great service to him. (See "Measurement of distances to inaccessible places.")
Triangulation.--Measurement of distance to an inaccessible place.--By similar triangles.--To show how the breadth of a river may be measured without instruments, without any table, and without crossing it, I have taken the following useful problem from the French 'Manuel du Genie.' Those usually given by English writers for the same purpose are, strangely enough, unsatisfactory, for they require the measurement of an angle. This plan requires pacing only. To measure A G, produce it for any distance, as to D; from D, in any convenient direction, take any equal distances, D C, c d; produce B C to b, making c B--C B; join d b, and produce it to a, that is to say, to the point where A C produced intersects it; then the triangles to the left of C, are similar to those on the right of C, and therefore a b is equal to A B. The points D C, etc., may be marked by bushes planted in the ground, or by men standing.
The disadvantages of this plan are its complexity, and the usual difficulty of finding a sufficient space of level ground, for its execution. The method given in the following paragraph is incomparably more facile and generally applicable.
Triangulation by measurement of Chords.--Colonel Everest, the late Surveyor-General of India, pointed out (Journ. Roy. Geograph. Soc. 1860, p. 122) the advantage to travellers, unprovided with angular instruments, of measure the chords of the angles they wish to determine. He showed that a person who desired to make a rude measurement of the angle C A B, in the figure (p. 40), has simply to pace for any convenient length from A towards C, reaching, we will say, the point a' and then to pace an equal distance from A towards B, reaching the point a ae. Then it remains for him to pace the distance a' a" which is the chord of the angle A to the radius A a'. Knowing this, he can ascertain the value of the angle C A B by reference to a proper table. In the same way the angle C B A can be ascertained. Lastly, by pacing the distance A B, to serve as a base, all the necessary data will have been obtained for determining the lines A C and B C. The problem can be worked out, either by calculation or by protraction. I have made numerous measurements in this way, and find the practical error to be within five per cent.