Steam Diagram of Wheal Towan Pumping Engine, erected 1827.

The late Sir John Rennie and other scientific persons were, about 1830, associated with Mr. Henwood[114] in examining the work performed by Cornish pumping engines: their reports are curtailed in the following comments on Wheal Towan engine, similar to Trevithick's Dolcoath engine of 1816, except perhaps that the last named was a little inferior in its detail movements, while much less care was taken to avoid unnecessary loss of heat.

Mr. Henwood also gave indicator diagrams of the expansion of the steam, on one of which the writer has marked ten horizontal lines, indicating the position of the piston at each foot of its stroke, and ten longitudinal lines dividing the diameter of the cylinder into tenths. The steam pressure in the boiler was 46·8 lbs. on the square inch above the atmosphere, or 4·68 lbs. for each of the ten longitudinal line divisions. x to c represents the top of the steam-cylinder 80 inches, diameter; x to F the length of the cylinder for a 10-feet stroke of the piston. By the time the piston had moved through one-twentieth of its course, reaching c, the expansive working had commenced; and when one-tenth of the stroke had been run, half of a division was cut off, showing by the curved indicator line the decrease in pressure of steam to 44.46 lbs. The comparatively small passage through the steam-valve not giving room for sufficient steam to follow up the increasing speed of the piston, led to its continued expansion in the cylinder, and by the time the piston had moved 2 feet, reaching D, the steam pressure was reduced by two divisions or 9.36 lbs., or a pressure of 37.44 lbs. on the piston; at this point the steam-valve was closed, and the remaining four-fifths of the stroke was performed by expansion; at the fifth horizontal line, or middle of the stroke, only three divisions of steam are left, giving a pressure of 14.04 lbs. to the inch; at the finish of the stroke there is only half a division, from E to F, or 2.34 lbs. of steam to the inch above the pressure of the atmosphere. On the return up-stroke of the piston, when it had reached within a foot of the finish of its course at C, the equilibrium valve closed, causing the enclosed steam of 2.34 lbs. to the inch to be compressed at the finish of the up-stroke shown by the curve G A to 9.36 lbs. on the inch, equal to its pressure about the middle of the down-stroke at N.

Trevithick's expansive engine therefore, commencing its work with steam of 46.8 lbs. on the inch above the atmosphere, only took a full supply from the boiler during one-tenth of its stroke, and none after one-fifth had been performed, while at the finish of the stroke it had about the same pressure as Watt began with.

The power of the Watt low-pressure steam vacuum pumping engine was increased by Trevithick from two to three fold, and its economical duty in about the same proportion; in other words, he increased the effective power of the steam-engine two or three fold without additional consumption of coal.

In the Wheal Towan engine the steam-cylinder was 80 inches in diameter, with a 10-feet stroke. The shaft was 900 feet in depth; the main pumps 16 inches in diameter; the pump-rods were of wood, about 14 inches square, and weighed more than the column of water in the pipes. The boilers were Trevithick's cylindrical with internal tube, wholly of wrought iron. The cylinder and steam-pipes were surrounded with sawdust about 20 inches in thickness, as a non-conductor of heat. The upper surfaces of the boilers were covered with a layer of ashes for the same purpose. The duty performed was 86·58 millions of pounds of water, raised one foot high by the consumption of a bushel of coal weighing 84 lbs. The immense power and economy of this engine are best understood by its average labour costing only one farthing in coal for lifting 1000 tons one foot high.

At or about that time an old intimate of Trevithick's, Captain Nicholas Vivian, managed the mine, and Mr. Neville, a shareholder, also a user of steam-engines in Wales, observing the economical working of Wheal Towan high-pressure steam expansive engine, doing eighty-seven millions, requested its manager to examine colliery engines, all of which were of the low-pressure kind; one of them was a Newcomen atmospheric, whose duty was six millions; four or five others were Watt low-pressure steam vacuum engines, doing fourteen millions; therefore the high-pressure steam-engine did six times as much work with a bucket of coal as the low-pressure steam vacuum, and fourteen times as much as the low-pressure steam atmospheric engine. Several competitive trials by the county engineers were published about that time, in one of which, after a personal examination of the engine, Mr. W. J. Henwood[115] and others reported a duty of 92·6 millions with a 91-lb. bushel of coal.[116]

Mr. Rennie had been a pupil, a fellow-worker with low-pressure Watt, and while his son, Sir John Rennie, was examining the high-pressure steam expansive engine erected by Trevithick's pupil, Captain Samuel Grose, under the management of Trevithick's friend, Captain Nicholas Vivian, the latter was engaged in reporting on certain low-pressure steam-engines in Wales, one of which was a Newcomen's atmospheric, probably the last of its race, whose principle of construction was a century old, working in company with the Watt low-pressure steam vacuum engine, then half a century old, the principles of both systems being on their last legs, and under the care of Trevithick's supporters.

During this jumble of engines, old and new, without a clear comprehension of their differences in principle, Trevithick, who had just returned from America, and lived within a few miles of Wheal Towan, looked on unconsulted and unconcerned on questions which in his mind had been settled by him in Dolcoath fifteen or twenty years before. The writer, during the Wheal Towan controversy, was the daily companion of Trevithick, and made drawings of the engine at the works of Harvey and Co., of Hayle, where it was constructed about 1827.