"Now know ye, that in compliance with the said proviso, I, the said Richard Trevithick, do hereby declare that the nature of my said invention of a method or apparatus for heating apartments, and the manner in which the same is to be carried into effect, is shown by the following drawings and description, where Fig. 1, Plate XVI., represents a longitudinal vertical section through the middle of a metallic vessel capable of containing a considerable quantity of water, with a fire-place in the inside, surrounded with water in all parts except at the doorway and at an opening where the smoke may pass off into a common chimney. Fig. 2, a vertical section near the fire-door, at right angles to the section shown at Fig. 1; with the sections are also shown wheels and handles, which lie out of the planes of the sections. The letters of reference indicate the same parts in both figures, a, the vessel; b, the space for containing the water; c, the fire-place; d, the fire-bars, or grating; e, the ash-pit; f, an inner door, to prevent the air from entering over the fire, yet allow it to pass into the ash-pit, and thence up to the fire through the grating; g, an outer door, to be shut when the fire is to be extinguished; h, a chimney or flue, to convey the smoke into a common chimney: this flue may be removed when the water boils, and then the opening of the flue may be shut, to keep in the heat, either by a door or by a plug fitting the opening; k, the cover of the vessel, having a rim all round, within which iron cement is to be driven to make the vessel steam-tight; l, a hole in the middle of the cover, into which a plug is dropped having a fluted stem and a flat head ground steam-tight upon the cover; this plug or valve is for the purpose of allowing the escape of steam if it should be raised above boiling point, and the valve is taken out when it may be necessary to pour water into the vessel; m, four wheels, on which the vessel may be easily removed from one room to another; n, two handles, to facilitate the removal. To use this apparatus for the warming of an apartment, the vessel is nearly filled with water, and placed so near to a chimney in another room, if more convenient, that the flue-piece h may convey away the smoke; a fire is then lighted upon the grating d, and continued till the water boils, when the flue-piece is taken away, and the flue opening stopped with the plug or door, and also the outer fire-door closed. In this state the apparatus is drawn into the apartment to be warmed, where it will continue for many hours to give off a most agreeable heat without any of that offensive odour usually experienced from stoves heated by an enclosed fire. Figs. 3, 4, 5, and 6 represent another form of my apparatus for heating churches or other large buildings. Fig. 3, a vertical section, from A to B, of Figs. 5 and 6, with a representation of the flue and its flanch, which lie beyond that section and the fire doorway and its flanch, which lie nearer, and also the four wheels, two of which are on each side of the section. Fig. 5, a horizontal section, from E to F, of Figs. 3 and 4. Fig. 6, a horizontal section, from G to H, of Figs. 3 and 4, with a view of the four handles situated at a higher level than the section, and of the fire-bars at a lower level; the same letters of reference signify the same parts in all the four figures, a, the outer case of the water-vessel; b, the cover; c, the space for water; d, the fire-place and flue; e, the fire-bars, made in two pieces, to be introduced through the fire doorway; f, the ash-pit; g, the fire-door; h, pipes open at top and bottom, cemented into holes in the bottom, and in the cover of the water-vessel; these pipes are to admit a current of air up through them, in order the more speedily to carry the heat into the building; k, the aperture in the cover, to supply the vessel with water, and the plug to keep in the steam; l, four wheels, on which the whole is moved, each wheel revolving in a recess cast in the bottom of the outer case, as represented by dotted lines in Figs. 3 and 4; m, four handles; n, the flanches of the fire doorway and of the flue, represented in Fig. 4 by dotted lines. A pipe to communicate with a chimney while the water is being heated must be made to suit locality, and therefore cannot require any description. This apparatus can be heated in a vestry room, and the fire-door and flue closed and then wheeled into the church, where it will soon diffuse a most comfortable warmth; or the heat may be kept up while standing in its place by having a constant communication with a chimney, and thus diffuse a much more salubrious heat than can be obtained by metallic or earthen stoves heated immediately by the fire."
It is doubtful if the profits he received from the heating apparatus covered the cost of the patent. The first stove was not unlike his first locomotive boiler. The more highly-finished stove resembled the marine tubular boiler, also of former years, in the further application of which we now follow him.
"Hayle, January 24th, 1829.
""Mr. Gilbert,
"Sir,—Since I have been down I have made a small portable engine, and set it to work on board a coal-ship for discharging the cargo; it is very manageable, and discharges 100 tons with 1 bushel of coal, without any person to attend it, there being a string that the man in the hold draws when the coal-basket is hooked, which is again drawn by the man who lands the basket on the deck; the string turns and re-turns the engine. It is near a ton weight, but as I find it double the power required, I am now making a smaller one, 3½ feet high and 3½ feet diameter, about 12 cwt.
"I intend this engine to warp the ship, pump it, cook the victuals, take in and out the cargo, and do all the hard work. The captains are very anxious to get them on board every ship. I think that an engine of 39 cwt. would propel their ships four miles an hour over and above the other work of the ship, and would neither be so heavy or take so much room as their present cooking house and furnace. I think that two iron paddles, one on each side of the rudder, under the stern, would do this very well; they would be in dead water, and out of the swell of the sea, and by being deep in the water would have a good resistance. Two paddles, each about 4 feet deep and 3 feet wide, would do this, without their rising out of the water; therefore their stroke would be nearly horizontal. The return stroke would be in the water. Thus, let the paddle stand perpendicular in the water, two-fifths of its width on one side, and three-fifths on the other side, the centre, which would turn its edge to the water on its back stroke, and its flat to the water on the forward stroke; it would be light, and out of the way of anything. I have a patent now going through the office for all this, which will also cover the new principle of returning the heat back again, as already described to you. The engine for drawing in Holland will be ready about the end of February, and by that time I shall have a complete portable engine ready for London for discharging, when I shall be in town.
Boat and Propeller.
"I remain, Sir,
"Your humble servant,
"Rd. Trevithick.
"P.S.—Wheal Towan engine is working with three boilers, all of the same size, and the strong steam from the boilers to the cylinder-case; the boilers are so low as to admit the condensed water to run back from the case again into the boiler. They find that this water is sufficient to feed one of these boilers without any other feed-water; therefore one-third of the steam generated must be condensed by the cold sides of the cylinder-case, and this agrees with the experiments I sent to you from Binner Downs. Wheal Towan engine has an 80-inch cylinder, and requires 72 bushels of coal in twenty-four hours; therefore the cylinder-case must in condensing high-pressure steam use 24 bushels of coal in twenty-four hours. Boulton and Watt's case for a 63-inch cylinder, working with low-pressure steam, condensed only 4½ bushels of coal in equal time, the proportions of surface being as 190 to 240 in Wheal Towan. Nearly five times the quantity was condensed of high steam than of low steam, proving that there is a theory yet unaccounted for."