"The following noblemen and gentlemen have signified their approbation of the measure:—His Grace the Duke of Norfolk, of Somerset, of Bedford; the Right Honourable Earl of Morley, of Shrewsbury, of Darlington; Lord Stafford; Sir Francis Burdett, M.P.; Joseph Hume, M.P.; R. H. Howard, M.P.; Win. Brougham, M.P.; J. E. Denison, M.P.; A. W. Robarts, M.P.; J. Easthope, M.P.; General Palmer, M.P."

"Design and specification for erecting a gilded conical cast-iron monument. Scale, 40 feet to the inch of 1000 feet in height, 100 feet diameter at the base, and 12 feet diameter at the top; 2 inches thick, in 1500 pieces of 10 feet square, with an opening in the centre of each piece 6 feet diameter, also in each corner of 18 inches diameter, for the purpose of lessening the resistance of the wind, and lightening the structure; with flanges on every edge on their inside to screw them together; seated on a circular stone foundation of 6 feet wide, with an ornamental base column of 60 feet high; and a capital with 50 feet diameter platform, and figure on the top of 40 feet high; with a cylinder of 10 feet diameter in the centre of the cone, the whole height, for the accommodation of persons ascending to the top. Each cast-iron square would weigh about 3 tons, to be all screwed together, with sheet lead between every joint. The whole weight would be about 6000 tons. The proportions of this cone to its height would be about the same as the general shape of spires in England.

Plan and Sectional Elevation of Proposed Reform Column.

"A steam-engine of 20-horse power is sufficient for lifting one square of iron to the top in ten minutes, and as any number of men might work at the same time, screwing them together, one square could easily be fixed every hour; 1500 squares requiring less than six months for the completion of the cone. A proposal has been made by iron founders to deliver these castings on the spot at 7l. a ton; at this rate the whole expense of completing this national monument would not exceed 80,000l.

"By a cylinder of 10 feet diameter, through which the public would ascend to the top, bored and screwed together, in which a hollow floating sheet-iron piston, with a seat round it, accommodating 25 persons; a steam-engine forces air into the cylinder-column from a blast-cylinder of the same diameter and working 3 feet a second, would raise the floating piston to the top at the same speed, or five or six minutes ascending the whole height; the descent would require the same time. A door at the bottom of the ascending cylinder opens inwards, which, when shut, could not be opened again, having a pressure of 1500 lbs. of air tending to keep it shut until the piston descends to the bottom. By closing the valve in the piston it would ascend to the top with the passengers floating on air, the same as a regulating blast-piston, or the upper plank of a smith's bellows. The air apparatus from the engine should be of a proper size to admit the floating piston with the passengers to rise and fall gradually, by the partially opening or shutting of the valves in the top of the piston. Supposing no springs or soft substance for the piston to strike on at the bottom of the column-cylinder, descending 3 feet a second would give no greater shock than falling from 9 inches high, that being the rate of falling bodies, or the same as a person being suddenly stopped when walking at the rate of two miles an hour. The pressure of the air under the piston would be about 1/2 lb. on the square inch; the aperture cannot let the piston move above 3 feet a second, but this speed may be reduced to any rate required by opening or shutting the valves on the floating piston."

General View of Reform Column.

To Trevithick's soaring genius nothing appeared very small, or very large, or very costly; not even the cast-iron column 1000 feet high covered with gold. The stone monument of London, 210 feet high, is admired by many; others climb into the cross on St. Paul's Cathedral, 420 feet high; some make a long journey to the great Pyramids, 500 feet high. How much more pleasant would be Trevithick's proposed floating 1000 feet upward on an air-cushion, controlled by his high-pressure steam-engine, and having, from the loftiest pedestal of human art, surveyed imperial London, to be again lowered to the every-day level at a safe speed, regulated by valves closed by such simple acts as rising from the seat; but should this be neglected, the passage of compressed air escaping from under the piston-carriage would only allow of its descent at a speed of 3 feet in a second, giving but the same shock on bumping the bottom as jumping off a 9-inch door-step.