For further account of luster and other types of reflection effects see Gem-Stones, by G. F. Herbert-Smith, Chapter V., pp. 37-39, or A Handbook of Precious Stones, M. D. Rothschild, pp. 17, 18.


LESSON VIII

HARDNESS

Another property by means of which one may distinguish the various gems from each other is hardness. By hardness is meant the ability to resist scratching. The term "hardness" should not be taken to include toughness, yet it is frequently so understood by the public. Most hard stones are more or less brittle and would shatter if struck a sharp blow. Other hard stones have a pronounced cleavage and split easily in certain directions. True hardness, then, implies merely the ability to resist abrasion (i. e., scratching).

Now, not only is hardness very necessary in a precious stone in order that it may receive and keep a fine polish, but the degree in which it possesses hardness as compared with other materials of known hardness may be made use of in identifying it.

No scale of absolute hardness has ever come into general use, but the mineralogist Mohs many years ago proposed the following relative scale, which has been used very largely:

Mohs's Scale of Hardness. Diamond, the hardest of all gems, was rated as 10 by Mohs. This rating was purely arbitrary. Mohs might have called it 100 or 1 with equal reason. It was merely in order to represent the different degrees of hardness by numbers, that he picked out the number 10 to assign to diamonds. Sapphire (and ruby) Mohs called 9, as being next to diamond in hardness. True topaz (precious topaz) he called 8. Quartz (amethyst and quartz "topaz") was given the number 7. Feldspar (moonstone) was rated 6, the mineral apatite 5, fluorspar 4, calcite 3, gypsum 2, and talc 1.

It may be said here that any mineral in this series, that is of higher number than any other, will scratch the other. Thus diamond (10) will scratch all the others, sapphire (9) will scratch any but diamond, topaz (8) will scratch any but diamond and sapphire, and so on.