Dotted line, FDH represents the course taken by a ray of light which is totally reflected at D in such fashion that angle FDA equals angle HDB.
Any light proceeding towards AB but between E and C, would fail to be totally reflected. Most of it would penetrate AB.
Total Reflection. For diamond this critical angle, as it is called, is very nearly 24° from a perpendicular to the surface. If now, we shape a diamond so that most of the light that enters it from the front falls upon the first back surface that it meets, at an angle greater than 24° to a perpendicular to that surface, the light will be totally reflected within the stone. The angle at which it is reflected will be the same as that at which it meets the surface. In other words the angles of incidence and of reflection are equal. See [Fig. 9] for an illustration of this point.
Theory of the "Brilliant." In the usual "brilliant" much of the light that enters through the front surface is thus totally reflected from the first rear facet that it meets and then proceeds across the stone to be again totally reflected from the opposite side of the brilliant. This time the light proceeds toward the top of the stone. See [Fig. 10]—(From G. F. Herbert-Smith's Gem-Stones).
The angles of the top of a brilliant are purposely made so flat that the up coming light fails to be totally reflected again and is allowed to emerge to dazzle the beholder. In the better made brilliants the angle that the back slope makes with the plane of the girdle is very nearly 41° and the top angle, or angle of the front slope to the plane of the girdle is about 35°. Such well made brilliants when held up to a bright light appear almost black—that is, they fail to pass any of the light through them (except through the tiny culet, which, being parallel to the table above, passes light that comes straight down to it).
Fig. 10.—Course of the Rays of Light Passing Through a Brilliant.
In other words, instead of allowing the light to penetrate them, well-made brilliants almost totally reflect it back toward its source, that is, toward the front of the stone. The well-cut diamond is a very brilliant object, viewed from the front.
We must now consider how the "fire" or prismatic color play is produced, for it is even more upon the display of fire than upon its pure white brilliancy that the beauty of a diamond depends.