Finally, and this seems to be very important, the only genus among the Megadrili which possesses gills is the Nile worm Alma nilotica.
Marine Species.
There are a few, but relatively speaking very few, worms of the order Oligochaeta which lead a marine life. And of these the majority are shore forms not extending into the waters of the sea. The most salient example, at any rate the best known perhaps, is the genus Pontodrilus, the name of which fixes its habitat, and was naturally given to it on that account. It was originally found on the sea shore of the South of France, and I have myself examined examples from Nice. The worm lives among bunches of sea-weed cast up by the sea, and which are thoroughly salt. Besides the two forms that have been met with in this Mediterranean region but which are united by Dr Michaelsen into but one species, other Pontodrilus have been described from so many and such diverse parts of the world as the following. The West Indies (Bermudas, Jamaica etc.), the coasts of South America, of both West and Eastern Africa, the Red Sea, Christmas Island near Java, Sharks Bay in West Australia, the Hawaii Archipelago, Celebes, South West Australia etc. In fact there is no great tract of the ocean excepting the antarctic region where this genus is not to be found. It is possible however that this latter statement is not correct and that New Zealand ought to be added. But the species described from those islands, viz. Pontodrilus lacustris, is not a marine form at all as its specific name denotes; nor is it quite certainly to be included in the genus. On the other hand a form from the Chatham Islands in the same quarter of the globe, described originally as Pontodrilus chathamensis, is to be referred to the antarctic region. Altogether some dozen species of Pontodrilus have been described by different naturalists; but quite recently Dr Michaelsen has reduced these to three only, which are P. bermudensis (F. E. B.), P. litoralis (Grube) and P. matsushimensis (Izuka), with the doubtful addition of P. lacustris already referred to. Whatever may be the ultimate verdict upon this question of species it is clear that the genus is widely spread upon the sea shores of the world and that forms from different regions show some fixed variations, which others may eventually agree with their original describers in regarding as definite species.
It cannot be said that any salient characters in the organisation of these worms mark them out from either terrestrial or fresh-water Oligochaeta. There are no such important variations of structure as can be seized upon to characterise them as inured to salt water. The genus agrees with many aquatic forms in the fact that the nephridia are not present in the earlier segments of the body, not indeed putting in an appearance until about the thirteenth segment or even later. They are thin delicate worms; but there is nothing distinguishing about this, while the feeble or absent gizzard is a character which is really difficult to correlate with habitat. Still we have here a whole genus which is marine in its habit. Among the Megadrili or earthworms there are not many other examples of these 'euryhaline' forms as they have been named. On the shores of Patagonia however and Kerguelen shore-living species of the mainly antarctic genus of earthworms Notiodrilus have been met with. And there are a few allied cases among the antarctic genera of Acanthodrilinae.
In addition to these terrestrial forms there are a few limicoline genera which are partly marine in their habit. Thus several species of the prevalently arctic and antarctic family Enchytraeidae are shore living. There are also marine Tubificids such as Clitellio arenarius and Tubifex ater (not uncommon on British shores), marine Lumbriculids and a marine Naid from the Italian coast. These forms show no great differences from their fresh-water allies.
Earthworms originally purely aquatic
animals.
The very name Earthworm, so distinctive as it is of the habitat of these animals, seems to have been expressly invented in order to crystallise into one word the remarkable distributions of these creatures. They are with very few exceptions the most purely terrestrial animals that we know. There are a few Mammals like the mole and several underground Amphibians and Snakes in the tropics which share this habitat with the worms, probably because they chiefly prey upon them. But there is no group of animals that is characterised by a subterranean existence in the way that earthworms are. For we cannot put burrowing animals, such as the prairie dog and many rodents, into the same category. These make and seek their burrows for protective purposes and in order to bring forth their young in security. They do not feed beneath the surface of the ground or pass their entire lives in that situation. We have already in a previous chapter dealt with such exceptional forms of earthworms as do not lead an entirely subterranean existence; but as was pointed out in chapter I these exceptions are but few and the immense bulk of earthworms fully justify their name.
Nevertheless there are many arguments which tend to show that these purely land-dwellers have grown out of exclusively water-dwellers and even that the change from the one mode of life to the other has been accomplished comparatively recently. For there are here and there vestiges of structures which seem only fitted for an aquatic life; and in other cases structural changes have commenced which would appear to be in definite relation to the underground mode of life prevalent to-day. Let us consider for a moment the differences which obtain between the conditions of life in water or in soft mud at the bottom of pool or river, and those which are undergone by a dweller in stiff soil or vegetable débris. In the first case the medium is fluid or at most very soft, while the soil is at least stiffer and harder to traverse.
Secondly the transition between the very bottom of a pool and the top layers of the water is more or less gradual, while the stiff soil ends abruptly in the tenuity of the atmosphere.
A third point of difference is doubtless the smaller supply of readily available oxygen in the still pools and even rapid rivers, which in certain stagnant pools and in the bottom waters of deep lakes must produce a very vast difference in physiological conditions.