Fig. 31.
Fig. 32.
It will now be in order to show how the square can be used for getting the lengths and bevels for braces of regular and irregular runs. If we wish to lay out a brace having a three-foot run on both post and beam, the matter is quite simple, for we can take 12 inches on the tongue and 12 inches on the blade and transfer this distance three times on a straight line and we have the extreme length of the brace from point to point, and by marking along the blade at one end of this length and along the tongue at the other end we also get the bevels. This is easy and simple enough, and without further refinement will give the lengths and bevels exactly for a flat-footed brace. When the run is different than the rise, as in the example shown at [Fig. 31], the square is applied in a somewhat different manner. Here we have a run of three feet and a rise of four feet. To get the proper length and bevels for a brace to fit in this situation we must use 12 inches on the tongue and 16 inches on the blade, then the bevel of the upper end of the brace will be found along the line of the tongue, and the line of the blade will give the bevel for the foot of the brace. In this case the square is transferred three times, just as though the rise and run were both three feet; the difference being made by dividing the odd foot into three equal parts of 4 inches each and adding one part to the blade, thus making the gauge point on the blade 16 inches instead of 12 inches, which regulates the extra length and the change in bevels. A little study on the part of the reader will reveal to him how the square may be set to gauge points so as to make a brace suitable for any rise and run of any right-angled frame work.
A brace intended for equal run and rise of four feet is shown at [Fig. 32]. Here we have the fence in use, and the square is shown in all its positions from start to finish in the formation of the brace. The gauge line marked 0000 is the line from which the marks 12 and 12 are supposed to measure, and this when squared over as shown leaves a butt, or “heel of the brace,” which is to rest on a shoulder “boxed” in both beam and post. The dotted lines on the ends of the brace show the tenons for which mortises are made in both post and girt or beam. It must be understood, of course, that this operation is only performed once for each kind of brace, and that on a pattern made of some kindly wood, such as pine, cedar or whitewood. For the pattern, dress up a piece of wood to 4 inches wide if the braces are to be made of 4x4-inch stuff; if for larger or smaller stuff then make the pattern the width of brace to suit. Have the pattern of sufficient length; if for a 4-foot run and rise it will require to be not less than 6 feet long. Run a gauge line three-eighths of an inch from the straight or front edge, as shown at 0000, and set the two 12-inch marks on this line, then screw the fence tight on the square with its sliding edge against the edge of the pattern, and then slide and mark as shown four times, when the length and bevels of the brace will be obtained. Provide for the tenons beyond the lines shown by the square, or for a “flat-foot” brace, saw the timber off on the lines shown on the edge of the square. After the pattern is made the fence and square may be laid aside, as the pattern can be used for any number of braces, and when finished with on one job, may be safely placed away to use again for the same “run and rise” when occasion arises. The pattern may be any thickness from half an inch to one inch. The same rules may be observed in making patterns for any regular or irregular runs and rises.
With regard to the brace rule as given on steel squares, I may say that there is some slight difference in the lengths given by different makers—though nearly all modern makes figure up alike—but this difference is so small that in soft wood framing it has no effect. In hardwood framing the framer never applies these rules, but gets his lengths with the square and fence.
The length of any brace simply represents the hypothenuse of a right-angled triangle. To find the hypothenuse, extract the square root of the sum of the square of the perpendicular and horizontal runs. For instance, if 6 feet is the horizontal run and 8 feet the perpendicular, 6 squared equals 36, 8 squared equals 64, 36 plus 64 equals 100, the square root of which is 10. These are the figures generally used for squaring the frame of a building or foundation wall.
If the run is 42 inches, 42 squared is 1764, double that amount, both sides being equal, gives 3528, the square root of which is, in feet and inches, 4 feet, 11.40 inches.
In cutting braces always allow in length from a sixteenth to an eighth of an inch more than the exact measurement calls for.