Besides these questions and answers, I also publish other up to date matter, all of which will make this volume one of the most useful little works to the American carpenter and wood-worker ever published.
Fig. 64.
Fig. 65.
I open this division with a few hints regarding the construction, or rather the laying out of a Hip-Roof where the design has been furnished by an architect, and which, of course, shows the pitch and the lay of the timbers. We suppose the roof to have a span of 18 feet and a rise of 6 feet, thus giving the roof a one-third pitch. The fence is used in this example to its full extent, and when placed on the square and fastened, the line of fence shows the slope or pitch of roof. [Fig. 64] shows the square set to the pitch of the hip rafter. The squares as set give the plumb and level cuts. [Fig. 65] is the rafter plan of a house 18 by 24 feet; the rafters are laid off on the level, and measure nine feet from center of ridge to outside of wall; there should be a rafter pattern with a plumb cut at one end, and the foot cut at the other, got out as previously shown. When the rafter foot is marked, place the end of the long blade of the square to the wall line, as in drawing, and mark across the rafter at the outside of the short blade, and these marks on the rafter pitch will correspond with two feet on the level plan; slide the square up the rafter and place the end of the long blade to the mark last made, and mark outside the short blade as before, repeat the application until nine feet are measured off, and then the length of the rafter is correct; remember to mark off one-half the thickness of ridge-piece. The rafters are laid off on part of plan to show the appearance of the rafters in a roof of this kind, but for working purposes the rafters 1, 2, 3, 4, 5 and 6, with one hip rafter, is all that is required.
To proceed, we first lay off common rafter, which has been previously explained; but deeming it necessary to give a formula in figures to avoid making a plan, we take 1-3 pitch. This pitch is 1-3 the width of the building, to point of rafter from wall plate or base. For an example, always use 8, which is 1-3 of 24, on tongues for altitude; 12, ½ the width of 24, on blade for base. This cuts common rafter. Next is the hip-rafter. It must be understood that the diagonal of 12 and 12 is approximately 17 in framing work, and the hip is the diagonal of a square added to the rise of roof; therefore we take 8 on the tongue and 17 on the blade; run the same number of times as common rafter which gives the length of hip and plumb and level bevels.
To cut jack rafters, divide the number of openings for common rafters. Suppose we have five jacks, with six openings, our common rafter 12 feet long, each jack would be 2 feet shorter. The first, next the hip, 10 feet, the second 8 feet, third 6 feet, and so on. The top down cut same as down cut for common rafter. For the bevel, cut against hip. Take half the width of building on tongue and length of common rafter on blade, and blade gives the bevel. Now find diagonal of 8 and 12, which is 14 7-16 in. Take this length on blade and 12 on tongue, blade gives bevels. If the hip-rafter is beveled or “backed” to suit jacks, then take height of hip on tongue, length of hip on blade, and tongue gives bevel. These figures will cover all bevels for cutting, cornice and sheathing. For bed moulds for gable to fit under cornice, take half width of building on tongue, length of common rafter on blade; blade gives cut. To cut planceer to run up valley, take height of rafter on tongue, length of rafter on blade; tongue gives bevel. For plumb cut, take height of hip on tongue, length of hip on blade; tongue gives bevel.
These figures were specially prepared for a hip roof having a one-third pitch, but will suit other pitches equally well if the difference in height of ridge is considered.
For a hopper the mitre is cut on the same principle. To make a butt joint, take the width of side on blade, and half the flare on tongue: the latter gives the cut. You will observe that a hip-roof is the same as a hopper inverted. The cuts for the edges of the pieces of a hexagonal hopper are found this way. Subtract the width of one piece at the bottom from the width of same at top, take remainder on tongue, depth of side on blade; tongue gives the cut. The cut on face of sides: Take 7-12 of the rise on tongue and the depth of side on blade; tongue gives cut. The bevel of top and bottom: Take rise on blade, run on tongue; tongue gives cut.