It is to be regretted that the atmospheric railway should have failed in economical working, for it possessed greater advantages for general traffic than the ordinary locomotive railway trains; and it is probable that if the same amount of inventive power and industry, which have been bestowed in improving locomotive engines, had been directed to overcome the difficulties of atmospheric traction, it might have proved economically successful.

The facility of travelling by railway has excited a spirit of locomotion before undreamed of. Instead of the diminished demand for horses which was apprehended when railways displaced stage coaches, public conveyances have increased a hundredfold. We can now scarcely conceive the time when there was not an omnibus in the streets of London, yet, scarcely more than thirty years ago, they were unknown, and travelling by stage carriages from one part of the town to another was prohibited by law! On their first introduction, omnibuses were considered absurdities, and were ridiculed as "painted hearses." The present omnibus traffic in London alone amounts to nearly £20,000 per week.


[THE AIR ENGINE.]

Numerous attempts have been made to supersede steam as a motive power, with the view to avoid the loss of heat by its absorption in the steam in a latent state. Mercury vapour and spirit vapour have been tried, in the expectation that as they possess much less capacity for heat, an equal pressure might be obtained, with a diminished loss of heating power. Several gaseous agents have been applied to the same purpose, of which carbonic acid gas seemed to present the best prospect of success, because it becomes expanded with a comparatively small increase of temperature. None of these attempts to produce a motive power superior to steam have yet proved successful. They have all, after a short season of promise, dropped out of notice; and the only one that is still in the field, struggling for superiority, is the air engine.

The first known air engine was invented by Sir George Cayley, in 1803. In his engine the air was heated by passing directly through the hot coals of the furnace, which some engineers yet consider to be the best mode of expansion; but its operation did not answer expectations. Mr. D. Stirling, of Dundee, afterwards improved on Sir George Cayley's plan, and introduced a method of regaining the heat from the expanded air, after it had done its work in the cylinder, and of applying it to expand the air again. Engines on this construction have been for some years working in Scotland, and in 1850 Mr. Stirling took out a patent for an improvement in the arrangement, which is stated to have been very successful.

Though Sir George Cayley and Mr. Stirling were the first in the field as inventors of air engines, the name of Mr. Ericsson, an American, is more closely associated with the invention, as he has for many years been conducting experiments on a large scale, and has tried his "caloric engine" on land, and on a ship of large burthen, built for the purpose.

The principle and the working of Mr. Ericsson's caloric engine is nearly the same as Mr. Stirling's; but as it has been brought most prominently into notice, we shall direct attention more particularly to its construction and performances. Mr. Ericsson obtained a patent for his caloric engine in this country in 1833, and a subsequent patent for improvements on it was taken out in 1851. During those years, and to a late period, he was indefatigably working out the principle, and numerous highly favourable reports have from time to time been made of the results of the experiments; but the advantages to be derived from the air engine remain nevertheless very questionable.

The object attempted to be gained is to make the same heating power do its work again and again. Atmospheric air, after being expanded by passing over an extensive hot surface, exerts the force thus acquired to raise the piston of a large cylinder, and it is then attempted to abstract the heat as the air issues out, and to apply it to the expansion of a further quantity.