Multiplying amperes (strength) by volts (pressure), gives us watts (power). Seven hundred and forty-six watts of electrical energy is equal to one horsepower of mechanical energy—will do the same work. Thus an electric current under a pressure of 100 volts, and a density of 7.46 amperes, is one horsepower; as is 74.6 amperes, at 10 volts pressure; or 746 amperes at one volt pressure. For convenience (as a watt is a small quantity) electricity is measured in kilowatts, or 1,000 watts. Since 746 watts is one horsepower, 1,000 watts or one kilowatt is 1.34 horsepower. The work of such a current for one hour is called a kilowatt-hour, and in our cities, where electricity is generated from steam, the retail price of a kilowatt-hour varies from 10 to 15 cents.

Now as to how electricity may be controlled, so that a dynamo will not burn itself up when it begins to generate.

Again we come back to the analogy of water. The amount of water that passes through a pipe in any given time, depends on the size of the pipe, if the pressure is maintained uniform. In other words the resistance of the pipe to the flow of water determines the amount. If the pipe be the size of a pin-hole, a very small amount of water will escape. If the pipe is as big around as a barrel, a large amount will force its way through. So with electricity. Resistance, introduced in the electric circuit, controls the amount of current that flows. A wire as fine as a hair will permit only a small quantity to pass, under a given pressure. A wire as big as one's thumb will permit a correspondingly greater quantity to pass, the pressure remaining the same. The unit of electrical resistance is called the ohm—named after a man, as are all electrical units.

Ohm's Law

The ohm is that amount of resistance that will permit the passage of one ampere, under the pressure of one volt. It would take two volts to force two amperes through one ohm; or 100 volts to force 100 amperes through the resistance of one ohm. From this we have Ohm's Law, a simple formula which is the beginning and end of all electric computations the farmer will have to make in installing his water-power electric plant. Ohm's Law tells us that the density of current (amperes) that can pass through a given resistance in ohms (a wire, a lamp, or an electric stove) equals volts divided by ohms—or pressure divided by resistance. This formula may be written in three ways, thus:

Or to express the same thing in words, current equals volts divided by ohms; ohms equals volts divided by current; or volts equals current multiplied by ohms. So, with any two of these three determining factors known, we can find the third. As we have said, this simple law is the beginning and end of ordinary calculations as to electric current, and it should be thoroughly understood by any farmer who essays to be his own electrical engineer. Once understood and applied, the problem of the control of the electric current becomes simple a b c.

Examples of Ohm's Law

Let us illustrate its application by an example. The water wheel is started and is spinning the dynamo at its rated speed, say 1,500 r.p.m. Two heavy wires, leading from brushes which collect electricity from the revolving armature, are led, by suitable insulated supports to the switchboard, and fastened there. They do not touch each other. Dynamo mains must not be permitted to touch each other under any conditions. They are separated by say four inches of air. Dry air is a very poor conductor of electricity. Let us say, for the example, that dry air has a resistance to the flow of an electric current, of 1,000,000 ohms to the inch—that would be 4,000,000 ohms. How much electricity is being permitted to escape from the armature of this 110-volt dynamo, when the mains are separated by four inches of dry air? Apply Ohm's law, C equals E divided by R. E, in this case is 110; R is 4,000,000; therefore C (amperes) equals 110/4,000,000—an infinitesimal amount—about .0000277 ampere.