Details of voltmeter or ammeter
This wheel, under a 14-foot head, takes 2,312 cubic feet of water a minute; and it develops 46.98 actual horsepower (as may be figured by using the formulas of Chapter III). The water supply is provided by a small mountain river. The dam is 10 feet high, and the race, which feeds the flume from the mill pond is 75 yards long. The race has two spillways, one near the dam, and the second at the flume itself, to maintain an even head of water at all times.
Half-Gate
Since the water supply varies with the seasons, it has been found practical to run the wheel at half-gate—that is, with the gate only half-open. A set of bevel gears work the main shaft, which runs at approximately 200 revolutions per minute; and the dynamo is worked up to its required speed of 1,500 revolutions per minute through a countershaft.
The dynamo is a modern four-pole machine, compound-wound, with a rated output of 46 amperes, at 125 volts—in other words a dynamo of 5.75 kilowatts capacity, or 7.7 electrical horsepower. At full load this dynamo would require a driving power of 10 horsepower, counting it as 75 per cent efficient; and, to conform to our rule of two water horsepower to one electrical horsepower, the wheel should be capable of developing 20 horsepower. As a matter of fact, in this particular instance, shutting down the wheel to half-gate more than halves the rated power of the wheel, and little more than 15 horsepower is available. This allowance has proved ample, under all conditions met with, in this plant.
A switchboard and its connections: G. Dynamo; A. Shunt field coils; B. Series coils; DD. Fuses; FF. Main switch; F. Field switch; C. Ammeter; V. Voltmeter; E. Lamp; R. Rheostat. Dotted lines show connections on back of board