A barn-yard light
Thousands of plants can be located within 100 feet of the house. If Farmer Jones could do this, he could use No. 8 wire, costing $2.62. The drop in pressure would be 5.99 volts at full load—so small it could be ignored entirely. In this case the voltmeter should be made to read 116 volts at the switchboard, by means of the rheostat.
If, on the other hand, this plant were 1,000 feet away from the house and the loss 10 volts the size wire would be
a No. 0 wire comes nearest to this figure, and its cost, for 2,000 feet, at 19 cents a pound, would be $137.94. A No. 0000 wire, costing $294.00, would give a 5 per cent drop at full load. In this case, the cost of transmission can be reduced to a much lower figure, by allowing a bigger drop at half-load, with regulation at the switchboard. Thus, a No. 2 wire here, costing but $95, would be satisfactory in every way. The loss at half-load would be about 9 volts, and the rheostat would be set permanently for 119 or 120 volts. A modern dynamo can be regulated in voltage by over 25 per cent in either direction, without harm, if care is taken not to overload it.
Benefit of Higher Voltages
If Farmer Jones' plant is a half of a mile away from the house, he faces a more serious proposition in the way of transmission. Say he wishes to transmit 26 amperes with a loss of 10 volts. What size wire will be necessary?
A No. 000 wire is nearest this size, and 5,280 feet of it would cost over $650.00. This cost would be prohibitive. If, however, he installed a 220-volt dynamo—at no increase in cost—then he would have to transmit only a half of 26 amperes, or 13 amperes, and he could allow 22 volts loss, counting 10 per cent. In this case, the problem would work out as follows: