In a classification we do not so much consider the peculiarities of single remedies, as the points in which large numbers agree together. These points of resemblance we gene rally find to be of the most importance. I have to consider three sets of authors in the second chapter. The first set treat of the general or ultimate effect of a medicine on the system; and classify medicines accordingly. A second set of writers have arranged therapeutical agents according to the organ or part of the body to which their action is especially directed. Neither of these deal with the mode in which medicines act as the basis of classification. A third set of writers have attempted in various ways to explain the modes of operation of medicines. They have laid down general rules about these operations, and have constructed more or less plausible theories on the subject. Some few have classified remedies on this plan. Now, with these theories I am more particularly concerned, as they trench immediately on the subject of this Essay. But they are not many, and it will not take us long to review them.

It is easier to find fault than to teach. After pointing out the shortcomings of some who have preceded me, I find myself necessitated in the third chapter to state my own conclusions as to the modus operandi of medicines.

Let us consider, as it were, the history of a remedy from the beginning to the end of its course. It is already "introduced into the stomach"—we must commence with it there. Now it does not remain there. It cannot act from the surface of the stomach through the medium of the nervous system.

In the First Proposition it is affirmed that it must obtain entry into the fluids of the body—pass, that is, from the intestinal canal into the system at large—before its action can begin. There are four proofs of this. It is shown that when introduced at another part of the body a medicine acts in the same way as when placed in the stomach. It is found by direct experiment that a poison will not act through the medium of nerves only, but that its passage in the blood is required. Thirdly, the course of the circulation is quick enough for the most rapid poison or medicine to pass quite round the body from the veins of the stomach before it begins to operate. The last and most conclusive argument to show that medicines pass out of the stomach into the system, is that they have actually been detected by chemists, not only in the blood, but in the secretions formed from the blood. Remedies, then, pass from the stomach into the blood and fluids. How do they do so?

In the Second Proposition it is laid down that all those which are soluble in water, or in the secretions of the stomach or intestines, pass through the coats of these organs into the interior of the capillary veins which surround them. It has already been shown that most medicines pass through in some way; we shall now have to learn how they pass, and what special arrangements are made for the passage of substances differing in nature. By the physical process of absorption a liquid may pass through the animal membranes, from the interior of the stomach or intestine to the interior of the small vein which lies close outside it. In examining the laws by which this process is conducted, we shall find that all the requirements are present in these parts, provided only that the substance to be absorbed shall be first in some way dissolved, and reduced to the liquid state. In the stomach there is, in contact with the substance just introduced, a thin watery secretion containing acid and a matter called pepsin: this is the gastric juice. A large number of medicines are soluble in water. They are dissolved in this fluid. Some others are soluble in dilute acid. These too are dissolved here. Albumen, and matters like it, are reduced to solution by the aid of the pepsin, which is the principle of digestion. But there are some few mineral bodies, and many vegetable substances, as fats and resins, which cannot be thus dissolved by the juice of the stomach. They are soluble, more or less, in a weak alkaline fluid; and such a fluid is the bile, which is poured out into the first portion of the intestine. They too are reduced to solution and absorbed. In this manner it is shown that a very great majority of remedial agents are capable of being reduced to solution, of being absorbed without material change, and of passing thus into the circulation.[5] Very few are quite insoluble; but some that are dissolved with difficulty may be left partly undissolved in the intestinal canal. What becomes of these?

It is asserted in the Third Proposition that substances which are thus insoluble cannot pass into the circulation. Arguing from a physical law, we should say at once that it was impossible; but the matter cannot be so lightly dismissed, for a foreign professor has lately asserted that insoluble matters may and do pass into the circulation. I have made experiments to satisfy myself on the point, and have come to the contrary conclusion.

In the Fourth Proposition it is stated that some few substances may act locally, by irritation or otherwise, on the mucous surface of the stomach or intestines. These are not many; they act without being absorbed; and they do not extend into the system at large. In some few cases, these local actions may be succeeded by changes in distant parts, on the principle of Revulsion.

Having just shown how medicinal substances are absorbed, we have now to suppose that they are in the blood.

It is next maintained, in the Fifth Proposition, that the medicine, being in the blood, must permeate the mass of the circulation as far as to reach the part on which it tends to act. This it can easily do. The circulating blood will conduct it any where, in a very short time. Supposing a medicine has to act on the liver, or on the brain, or on the kidney, it does not influence these organs at a distance, but it passes directly to them in the blood, and then its operation is manifested. This may be called the rule of local access. Its proof depends on two things: on the impossibility of the medicinal influence reaching the part in any other way, as shown in the first proposition; and on the fact of medicinal agents having been actually detected in many cases in the very organs over which they exert a special influence. But are there any exceptions to this? Can a medicine ever produce an effect without actually reaching the part? It seems that there may be two exceptions. In some cases an impression of pain may be transmitted along a nerve from one part to another; and in some other few instances a muscle, when caused to contract by the influence of a medicine, may cause other muscles near it to contract by sympathy.

Before we inquire into the remedial action of the medicine in the blood, we must consider whether that fluid may not first alter it in some way, so as to hinder or affect its operation. To a certain extent this is possible.