The development of the Palinuridiæ seems to be very peculiar. Claus found in the ova of the Spiny Lobster (Palinurus), embryos with a completely segmented body, but wanting the appendages of the tail, abdomen, and last two segments of the middle-body; they possess a single median and considerably compound eye; the anterior antennæ are simple, the posterior furnished with a small secondary branch; the mandibles have no palpi; the maxillipedes of the third pair, like the two following pairs of feet, are divided into two branches of nearly equal length; whilst the last of the existing pairs of feet and the second pair of maxillipedes bear only an inconsiderable secondary branch. Coste, as is well known, asserts that he has bred young Phyllosomata from the ova of this lobster—a statement that requires further proof, especially as the more recent investigations of Claus upon Phyllosoma by no means appear to be in its favour.

The large compound eyes, which usually soon become moveable, and sometimes stand upon long stalks even in the earliest period, as well as the carapace, which covers the entire fore-body, indicate at once that the position of the larvæ hitherto considered, notwithstanding all their differences, is under the Podophthalma. But not a single characteristic of this section is retained by the brood of some Prawns belonging to the genus Penëus or in its vicinity. These quit the egg with an unsegmented ovate body, a median frontal eye, and three pairs of natatory feet, of which the anterior are simple, and the other two biramose—in fact, in the larval form, so common among the lower Crustacea, to which O. F. Müller gave the name of Nauplius. No trace of a carapace! no trace of the paired eyes! no trace of masticating organs near the mouth which is overarched by a helmet-like hood!

In the case of one of these species the intermediate forms which lead from the Nauplius to the Prawn, have been discovered in a nearly continuous series.

The youngest Nauplius (Fig. 28) is immediately followed by forms in which a fold of skin runs across the back behind the third pair of feet, and four pairs of stout processes (rudiments of new limbs) sprout forth on the ventral surface. Within the third pair of feet, powerful mandibles are developed.

Fig. 28. Nauplius of a Prawn, magnified.
Fig. 29. Young Zoëa of the same Prawn, magnified.

In a subsequent moult the new limbs (maxillæ, and anterior and intermediate maxillipedes) come into action, and in this way the Nauplius becomes a Zoëa (Fig. 29), agreeing perfectly with the Zoëa of the Crabs in the number of the appendages of the body, although very different in form and mode of locomotion and even in many particulars of internal structure. The chief organs of motion are still the two anterior pairs of feet, which are slender and furnished with long setæ; the third pair of feet loses its branches, and becomes converted into mandibles destitute of palpi. The labrum acquires a spine directed forward and of considerable size, which occurs in all the Zoëæ of allied species. The biramose maxillipedes appear to assist but slightly in locomotion. The forked tail reminds us rather of the forms occurring in the lower Crustacea, especially the Copepoda, than of the spatuliform caudal plate which characterises the Zoëæ of Alpheus, Palæmon, Hippolyte, and other Prawns, of the Hermit Crabs, the Tatuira and the Porcellanæ. The heart possesses only one pair of fissures, and has no muscles traversing its interior like trabeculæ, whilst in other Zoëæ two pairs of fissures and an interior apparatus of trabeculæ are always distinctly recognisable.

Fig. 30. Older Zoëa of the same Prawn, magnified.
Fig. 31. Mysis-form of the same Prawn, magnified.

During this Zoëal period the paired eyes, the segments of the middle-body and abdomen, the posterior maxillipedes, the lateral caudal appendages and the stump-like rudiments of the feet of the middle-body are formed (Fig. 30). The caudal appendages sprout forth like other limbs freely on the ventral surface, whilst in other Prawns, the Porcellanæ, etc., they are produced in the interior of the spatuliform caudal plate.