[5] In the young of Hyperia galba Spence Bate did not find any of the abdominal feet, or the last two pairs of thoracic feet, but this very remarkable statement required confirmation the more because he examined these minute animals only in the dried state. Subsequently I had the wished-for opportunity of tracing the development of a Hyperia which is not uncommon upon Ctenophora, especially Beroë gilva, Eschsch. The youngest larva from the brood-pouch of the mother already possess the whole of the thoracic feet; on the other hand, like Spence Bate, I cannot find those of the abdomen. At first simple enough, all these feet soon become converted, like the anterior feet, into richly denticulated prehensile feet, and indeed of three different forms, the anterior feet (Fig. 44) the two following pairs (Fig. 45) and finally the three last pairs (Fig. 46) being similarly constructed and different from the rest. In this form the feet remain for a very long time, whilst the abdominal appendages grow into powerful natatory organs, and the eyes, which at first seemed to me to be wanting, into large hemispheres. In the transition to the form of the adult animal the last three pairs of feet (Fig. 49) especially undergo a considerable change. The difference between the two sexes is considerable; the females are distinguished by a very broad thorax, and the males (Lestrigonus) by very long antennæ, of which the anterior bear an unusual abundance of olfactory filaments.
Their youngest larvæ of course cannot swim; they are helpless little animals which firmly cling especially to the swimming laminæ of their host; the adult Hyperiæ, which are not unfrequently met with free in the sea, are, as is well known, the most admirable swimmers in their order. (“Il nage avec une rapidité extrême,” says Van Beneden of H. Latreillii M.-Edw.)
The transformation of the Hyperiæ is evidently to be regarded as acquired and not inherited, that is to say the late appearance of the abdominal appendages and the peculiar structure of the feet in the young are not to be brought into unison with the historical development of the Amphipoda, but to be placed to the account of the parasitic mode of life of the young.
As in Brachyscelus, free locomotion has been continued to the adult and not to the young, contrary to the usual method among parasites. Still more remarkable is a similar circumstance in Caligus, among the parasitic Copepoda. The young animal, described by Burmeister as a peculiar genus, Chalimus, lies at anchor upon a fish by means of a cable springing from its forehead, and having its extremity firmly seated in the skin of the fish. When sexual maturity is attained, the cable is cut, and the adult Caligi, which are admirable swimmers, are not unfrequently captured swimming freely in the sea. (See ‘Archiv. für Naturgeschichte’ 1852, I. p. 91).

[6] “I know of no case in which the inferior (antennæ) are obsolete, when the superior are developed,” Dana. (Darwin, ‘Monograph on the Subclass Cirripedia, Lepadidæ’ p. 15.)

[7] A trustworthy English Naturalist, Goodsir, described the brood-pouch and eggs of Cuma as early as 1843. Kröyer, whose painstaking care and conscientiousness is recognised with wonder by every one who has met him on a common field of work, confirmed Goodsir’s statements in 1846, and, as above mentioned, took out of the brood-pouch embryos advanced in development and resembling their parents. By this the question whether the Diastylidæ are full-grown animals or larvæ, is completely and for ever set at rest, and only the famous names of Agassiz, Dana and Milne-Edwards, who would recently reduce them again to larvæ (see Van Beneden, ‘Rech. sur la Fauna littor. de Belgique’ Crustacées, pp. 73, 74), induce me, on the basis of numerous investigations of my own, to declare in Van Beneden’s words; “Parmi toutes les formes embryonnaires de podophthalmes ou d’édriophthalmes que nous avons observées sur nos côtes, nous n’en avons pas vu une seule qui eût même la moindre resemblance avec un Cuma quelconque.” The only thing that suits the larvæ of Hippolyte, Palæmon and Alpheus, in the family character of the Cumacea as given by Kröyer which occupies three pages (Kröyer, ‘Naturh. Tidsskrift, Ny Raekke,’ Bd. ii. pp. 203–206) is: “Duo antennarum paria.” And this, as is well known, applies to nearly all Crustacea. How well warranted are we therefore in identifying the latter with the former. However, it is sufficient for any one to glance at the larva of Palæmon (Fig. 27) and the Cumacean (Fig. 52) in order to be convinced of their extraordinary similarity!

CHAPTER IX.
DEVELOPMENTAL HISTORY OF ENTOMOSTRACA, CIRRIPEDES, AND RHIZOCEPHALA.

The section of the Branchiopoda includes two groups differing even in their development,—the Phyllopoda and the Cladocera. The latter minute animals, provided with six pairs of foliaceous feet, which chiefly belong to the fresh waters, and are diffused under similar forms over the whole world, quit the egg with their full number of limbs. The Phyllopoda, on the contrary, in which the number of feet varies between 10 and 60 pairs, and some of which certainly live in the saturated lie of salterns and natron-lakes, but of which only one rather divergent genus (Nebalia) is found in the sea,[[1]] have to undergo a metamorphosis. Mecznikow has recently observed the development of Nebalia, and concludes from his observations “that Nebalia, during its embryonal life, passes through the Nauplius- and Zoëa-stages, which in the Decapoda occur partly (in Penëus) in the free state.” “Therefore,” says he, “I regard Nebalia as a Phyllopodiform Decapod.” The youngest larvæ [of the Phyllopoda] are Nauplii, which we have already met with exceptionally in some Prawns, and which we shall now find reproduced almost without exception. The body-segments and feet, which are sometimes so numerous, are formed gradually from before backwards, without the indication of any sharply-discriminated regions of the body either by the time of their appearance or by their form. All the feet are essentially constructed in the same manner and resemble the maxillæ of the higher Crustacea.[[2]] We might regard the Phyllopoda as Zoëæ which have not arrived at the formation of a peculiarly endowed abdomen or thorax, and instead of these have repeatedly reproduced the appendages which first follow the Nauplius-limbs.

Of the Copepoda—some of which, living in a free state, people the fresh waters, and in far more multifarious forms the sea, whilst others, as parasites, infest animals of the most various classes and often become wonderfully deformed—the developmental history, like their entire natural history, was, until lately, in a very unsatisfactory state. It is true, that we long ago knew that the Cyclopes of our fresh waters were excluded in the Nauplius-form, and that we were acquainted with some others of their young states; we had learnt, through Nordmann, that the same earliest form belonged to several parasitic Crustacea, which had previously passed, almost universally, as worms; but the connecting intermediate forms which would have permitted us to refer the regions of the body and the limbs of the larvæ to those of the adult animal, were wanting. The comprehensive and careful investigations of Claus have filled up this deficiency in our knowledge, and rendered the section of the Copepoda one of the best known in the whole class. The following statements are derived from the works of this able naturalist. From the abundance of valuable materials which they contain I select only those which are indispensable for the comprehension of the development of the Crustacea in general, because, in what relates to the Copepoda in particular, the facts have already been placed in the proper light by the representation of their most recent investigator, and must appear to any one whose eyes are open, as important evidence in favour of the Darwinian theory.[[3]]

All the larvæ of the free Copepoda investigated by Claus, have, at the earliest period, three pairs of limbs (the future antennæ and mandibles), the anterior with a single, and the two following ones with a double series of joints, or branchiæ. The unpaired eye, labrum, and mouth, already occupy their permanent positions. The posterior portion, which is usually short and destitute of limbs, bears two terminal setæ, between which the anus is situated. The form in this Nauplius-brood is extremely various,—it is sometimes compressed laterally, sometimes flat,—sometimes elongated, sometimes oval, sometimes round or even broader than long, and so forth. The changes which the first larval stages undergo during the progress of growth, consist essentially in an extension of the body and the sprouting forth of new limbs. “The following stage already displays a fourth pair of extremities, the future maxillæ.” Then follow at once three new pairs of limbs (the maxillipedes and the two anterior pairs of natatory feet). The larva still continues like a Nauplius, as the three anterior pairs of limbs represent rowing feet; at the next moult it is converted into the youngest Cyclops-like state, when it resembles the adult animal in the structure of the antennæ and buccal organs, although the number of limbs and body segments is still much less, for only the rudiments of the third and fourth pairs of natatory feet have made their appearance in the form of cushions fringed with setæ, and the body consists of the oval cephalothorax, the second, third, and fourth thoracic segments, and an elongated terminal joint. In the Cyclopidæ the posterior antennæ have lost their secondary branch, and the mandibles have completely thrown off the previously existing natatory feet, whilst in the other families these appendages persist, more or less altered. “Beyond this stage of free development, many forms of the parasitic Copepoda, such as Lernanthropus and Chondracanthus, do not pass, as they do not acquire the third and fourth pairs of limbs, nor does a separation of the fifth thoracic segment from the abdomen take place; others (Achtheres) even fall to a lower grade by the subsequent loss of the two pairs of natatory feet. But all free Copepoda, and most of the parasitic Crustacea, pass through a longer or shorter series of stages of development, in which the limbs acquire a higher degree of division into joints in continuous sequence, the posterior pairs of feet are developed, and the last thoracic segment and the different abdominal segments are successively separated from the common terminal portion.”

Fig. 53 and 54. Nauplii of Copepoda, the former magnified, the latter magnified 2x.
Fig. 55. Nauplius of Tetraclita porosa after the first moult, magnified. The brain is seen surrounding the eye, and from it the olfactory filaments issue; behind it are some delicate muscles passing to the buccal hood.

There is only one thing more to be indicated in the developmental history of the parasitic Crustacea, namely that some of them, such as Achtheres percarum, certainly quit the egg like the rest in a Nauplius-like form, inasmuch as the plump, oval, astomatous body bears two pairs of simple rowing feet, and behind these, as traces of the third pair, two inflations furnished each with a long seta, but that beneath this Nauplius-skin a very different larva lies ready prepared, which in a few hours bursts its clumsy envelope and then makes its appearance in a form “which agrees in the segmentation of the body and in the development of the extremities with the first Cyclops-stage” (Claus). The entire series of Nauplius-stages which are passed through by the free Copepoda, are in this case completely over-leapt.