Up to this time, therefore, the efforts of man to conquer the air had miscarried. They were conducted on a wrong principle, the machinery employed being heavier than the air itself But, even before the time of Montgolfier, the principles of aerostation began to be recognised, though nothing was actually done in the way of acting upon them. Thus, in 1767, Professor Black, of Edinburgh, announced in his class that a vessel, filled with hydrogen, would rise naturally in the air; but he never made the experiment, regarding the fact as capable of being employed only for amusement. Finally, Cavallo, in 1782, communicated to the Royal Society of London the experiments he had made, and which consisted in filling soap-bubbles with hydrogen. The bubbles rose in the atmosphere, the gas which filled them being lighter than air.

[ [!-- H2 anchor --] ]

Chapter III. The Theory of Balloons.

A certain proposition in physics, known as the “Principle of Archimedes,” runs to the following effect:—“Every body plunged into a liquid loses a portion of its weight equal to the weight of the fluid which it displaces.” Everybody has verified this principle, and knows that objects are much lighter in water than out of it; a body plunged into water being acted upon by two forces—its own weight, which tends to sink it, and resistance from below, which tends to bear it up. But this principle applies to gas as well as to liquids—to air as well as to water. When we weigh a body in the air, we do not find its absolute weight, but that weight minus the weight of the air which the body displaces. In order to know the exact weight of an object, it would be necessary to weigh it in a vacuum.

If an object thrown into the air is heavier than the air which it displaces, it descends, and falls upon the earth; if it is of equal weight, it floats without rising or falling; if it is lighter, it rises until it comes to a stratum of air of less weight or density than itself. We all know, of course, that the higher you rise from the earth the density of the air diminishes. The stratum of air that lies upon the surface of the earth is the heaviest, because it supports the pressure of all the other strata that lie above. Thus the lightest strata are the highest.

The principle of the construction of balloons is, therefore, in perfect harmony with physical laws. Balloons are simply globes, made of a light, air-tight material, filled with hot air or hydrogen gas which rise in the air because (they are lighter than the air they displace).

The application of this principle appeared so simple, that at the time when the news of the invention of the balloon was spread abroad the astronomer Lalande wrote—“At this news we all cry, ‘This must be! Why did we not think of it before?’” It had been thought of before, as we have seen in the last chapter, but it is often long after an idea is conceived that it is practically realised.

The first balloon, Montgolfier’s, was simply filled with hot air; and it was because Montgolfier exclusively made use of hot air that balloons so filled were named Montgolfiers. Of course we see at a glance that hot air is lighter than cold air, because it has become expanded and occupies more space—that is to say, a volume of hot air contains actually less air than a volume of the same size of air that has not been heated. The difference between the weight of the hot air and the cold which it displaced was greater than the weight of tire covering of the balloon. Therefore the balloon mounted.

And, seeing that air diminishes in density the higher we ascend, the balloon can rise only to that stratum of air of the same density as the air it contains. As the warm air cools it gently descends. Again, as the atmosphere is always moving in currents more or less strong, the balloon follows the direction of the current of the stratum of air in which it finds itself.

Thus we see how simply the ascent of Montgolfiers, and their motions, are explained. It is the same with gas-balloons. A balloon, filled with hydrogen gas, displaces an equal volume of atmospheric air; but as the gas is much lighter than the air, it is pushed up by a force equal to the difference of the density of air and hydrogen gas. The balloon then rises in the atmosphere to where it reaches layers of air of a density exactly equal to its own, and when it gets there it remains poised in its place. In order that it may descend, it is necessary to let out a portion of the hydrogen gas, and admit an equal quantity of atmospheric air; and the balloon does not come to the ground till all, or nearly all, the gas has been expelled and common air taken in. Balloons inflated with hydrogen gas are almost the only ones in use at the present day. Scarcely ever is a Montgolfier sent up. There are aeronauts, however, who prefer a journey in a Montgolfier to one in a gas-balloon. The air voyager in this description of balloon had formerly many difficulties to contend with. The quantity of combustible material which he was bound to carry with him; the very little difference that there is between the density of heated and of cold air; the necessity of feeding the fire, and watching it without a moment’s cessation, as it hangs in the rechaud over the middle of the car, rendered this sort of air travelling subject to many dangers and difficulties. Recently, M. Eugene Godard has obviated a portion of this difficulty by fitting a chimney, like that which is found of such incalculable service in the case of the Davy lamp. It is principally on account of this improvement that the Montgolfiere has risen so highly in popular esteem.