Neisser first drew attention to clear spaces in the bacilli; these Neisser regards as spores; we regard them as the first sign of breaking down of the bacilli into granules, and for the following reasons. We have made numerous attempts to cultivate the bacilli, and have attained in all our investigations only (the breaking down of the bacilli into) granules, and in examining a piece of a nodule which lay eight days on broth peptone agar, found all the bacilli beset with clear spaces. And as the result has always been the breaking down into granules, we believe we are right in regarding the appearance of these holes as the commencement of degeneration, and that we are not as yet familiar with spores of the lepra bacillus. It appears as if all bacilli in time break down into granules, particularly in the internal organs, where it occurs much earlier than in the skin nodules; whether this is the result of digestion on the part of the cell, we cannot say; but as the bacilli at first multiply in the cells, and the breaking down appears most definitely and freely when the cells are crammed full of bacilli, it is equally possible that it is the result of diminished nutrition, and as they break down more rapidly in the internal organs, it is also possible, indeed probable, that the higher temperature in these organs favours this disintegration. As we have unfortunately not been able to cultivate the bacilli, it is at present impossible to form a conclusion. At all events, we regard the transformation into granules as a degeneration, and believe that the bacilli thus altered are dead.
In the skin nodules we have only once found bacilli in the epidermis; this was in a nodule with many fissures in the epithelium, and partly covered with exudation. We have not been able to decide from our preparations whether the bacilli lie in the epithelial cells or only between them, possibly enclosed in wandering cells.[3] Touton found bacilli in the epithelium of the sweat glands, and he and Unna in the hair sheaths also; this situation of the bacilli we have never observed with certainty, and it can only be exceptional, and can scarcely give origin to a “constantly flowing bacterial spring,” as Unna suggests. As a rule, no bacilli are found in the epithelium.
Of the presence of bacilli in affections of the eye, it may be said in general that everywhere, where infiltration is present, bacilli are found. In the clouding of the upper part of the cornea described above, which we recognise as keratitis punctata, there are found groups of granularly degenerated bacilli close under the epithelium. This we have only once been able to determine on the living by excision of a lamella of the cornea; in this case the affection was, according to our own view, disappearing, because the bacilli were granularly degenerated. This corresponds with the fact that this characteristic affection of the cornea always ultimately disappears; the granules are probably absorbed. We have already stated that blood vessels precede the nodule into the cornea, and that they are surrounded by round cells. Here, as in the middle of the nodule, the corneal corpuscles are found apparently intact or filled with brown granules ([Plate VI], Fig. 3, and [Plate VIII], Fig. 1). The same is the case in nodules in the iris, in which one finds the stellate cells intact ([Plate VIII], Fig. 2). Round cells are also found in the spaces in the cornea near the nuclei of the corneal corpuscles ([Plate VIII], Fig. 3). All this appears to us definitely to indicate that at least most of the cells of the growth are migrated white blood corpuscles.
Dr. Boeckmann has introduced, in the treatment of the nodules growing into the cornea, the division of the cornea in front of the nodules; through the scar formed by the healing of the wound, they hardly ever grow. We have seen such a case in which, on the one side of the scar, no actual nodules, but only a clouding appeared, and we were later able to examine the eye anatomically. The nodule reached like a rampart close up to the scar, and all its cells were full of bacilli. On that side of the scar in the clouded part of the cornea, there were found only a few scattered cells containing bacilli; no vessels had penetrated the scar, and only a very few cells had succeeded in making their way through. The treatment is therefore a very desirable one in order to preserve the pupil free. We have been able to prepare no bacillary preparations from the retina, as we have not seen the affection since the discovery of the bacilli; the two brown clumps which are figured in [Plate VII], Fig. 3, lay in the outer granular layer of the retina.
As already indicated, the testicles are affected with leprosy in all nodular cases. The affection is both inter-tubular and intra-tubular. In a testicle only slightly affected, we found bacilli everywhere in the endothelium of the vessels, and in several dilated vessels white blood corpuscles filled with bacilli ([Plate X], Figs. 5 and 6); and in some places also bacilli lying free between the red blood corpuscles ([Plate X], Fig. 7). At the same time, and especially where the affection is more marked, the bacilli penetrate into the seminal canals, and lie grouped in their walls around the nuclei ([Plate IX], Figs. 4 and 5, [Plate X], Fig. 1), and their epithelial cells are more or less filled with them (Figs. 1, 2 and 4).
The bacilli appear rapidly to break down into granules, and one finds, especially in the seminal canals, globi, sometimes enormously large, as if they were formed by the running together of several epithelial cells. We have found here globi where a nucleus and a little protoplasm were evident ([Plate X], Fig. 3), and a globus where there lay in the vacuole small fragments stained with Bismarck brown ([Plate X], Fig. 2). As it has been proved that a man affected with nodular leprosy may beget children, and as the globi lie in the seminal canals, it is not altogether impossible that these may be thrown off with the spermatic fluid, and that in this way the ovum is infected. But as, according to our view, these globi contain only broken down and degenerated bacilli, it must be regarded as very doubtful whether they are still infective. In examining the contents of the seminal vesicles, we have found in them neither bacilli, nor globi, nor any spermatozoa. It is an old conception that lepers suffer from satyriasis. This is, according to our experience, certainly not the case. The leprous testicle is finally completely destroyed by the scar-like contraction of the connective tissue, and one finds only here and there traces of the seminal canals around the globi which they enclose.
When the liver is severely affected with leprosy, there are evident macroscopically, fine white, or yellow, streaks or points, which shine through the capsule and are more evident on the cut surface ([Plate IX], Fig. 2); they evidently lie in the acini. One also finds round cells with bacilli along the portal vessels and in the capsule of Glisson. Here and there we find also scattered bacilli in the acini, and as is evident from a specimen hardened in Fleming’s solution, the bacilli lie in the endothelium of the blood vessels ([Plate IX], Fig. 1). In the liver cells we have never seen bacilli, but we have found here also, in the vessels, white blood corpuscles containing bacilli ([Plate VIII], Fig. 6, and [Plate IX], Fig. 1).
The affection of the spleen may also be recognised macroscopically by the yellow streaks and points in its substance ([Plate IX], Fig. 3), but the affection must be pretty severe to be recognised macroscopically; the cut surface is then somewhat dry. The affection has its seat in the arterial sheaths and the Malpighian bodies; and in this organ also one can in good preparations definitely recognise the position of the bacilli in the cells ([Plate VIII], Fig. 5).
The glands in the hilum of the liver are, when that organ is affected with leprosy, definitely leprous, and the affection of the glands is often more evident than that of the liver itself. In the hilum of the spleen we have once or twice found leprous lymph glands.
This leprous affection of the glands is macroscopically very readily recognisable. The glands are swollen as a whole, without any alteration in their form. On section, one sees the ampullæ and the medullary cords of a yellow or yellowish brown colour; this colour gives to the glands such a characteristic aspect that they can hardly be mistaken. The affection is best studied on the inguinal glands, and the retro-peritoneal ones in connection with them. The lowest inguinal gland is always most swollen, reaching sometimes to the size of a pigeon’s egg; the ampullæ and trabeculæ are coloured throughout a deep yellow; but the somewhat thickened capsule and the connective tissue framework have retained their greyish semi-transparent appearance, so that the structure of the gland stands out very clearly, especially if the lymph sinuses are injected with blood pigment, which is sometimes the case when there have been peripheral hæmorrhages in the nodules. As we advance upwards the glands are gradually less swollen, and the yellow colouring of the ampullæ and trabeculæ less intense, and one can further follow in the retro-peritoneal glands a gradual diminution of the affection until, about the level of the kidney or rather higher, normal glands are once more met with. The glands are permeable, but penetration is evidently more difficult, for the lymph vessels leading to them are dilated, especially those of the lowest and most swollen glands.