A third visit, in January 1835, gave no results; but on January 21, 1838, the Professor succeeded in determining some very remarkable facts. A depression in the sloping plain is called, par excellence, the ice-hole; and this is surrounded by firs and birches, which grow within three or four fathoms of the edge of the hole, so that the rays of the sun do not reach the hole in winter. Fresh snow lay on these trees; and there was nowhere any sign of melted snow, or of the formation of icicles. The basaltic débris, in which ice had been found in the summer, covers here a space of 5 fathoms long by 3 or 4 broad, immediately at the foot of a steep basaltic precipice. At eleven in the morning the temperature was 14° F. in the shade; and snow lay all round the ice-hole, to a thickness of 1-1/2 or 2 feet. The snow which covered the débris was pierced by holes, which could not have been caused by the sun, for its rays did not penetrate the trees; and, indeed, no sun had been visible for some days. These holes were generally turned towards the north, and were like chimneys. On investigation, it was found that icicles hung down into them, showing, of course, past or present thaw, and within the cavities no ice was found. The thermometer gave here from 27°·5 F. to 25°·15 F.; but in the crevices, into which the thermometer could not be pushed, the hand discovered a warm air. The moss drawn from these crevices was found to be steeped in unfrozen water, and it froze promptly when brought into the outer air.

The party afterwards climbed up the precipitous basalt, and reached, at 3 P.M., a level covered with large blocks of the same material, where the thermometer was slightly under 12° F. in the shade. The blocks were for the most part stripped of snow, and in some cases thin shields of ice were observed standing out two or three inches from them, forming hollow chambers, in which an agreeable warmth was found. These shields were invariably on the south side of the stones, the north side being free from ice and snow alike. In some places vapours were seen to rise. The thermometer gave 41° F. at a depth of six inches among the stones, though the external temperature, as has been said, was 12° F. For eight days previously, the thermometer had been always far below the freezing point, and on the 17th (four days before) had been 13° below zero (F.). On the 19th and 20th heavy snow had fallen. All these facts seem to show that the warmth which had caused the chimneys in the snow over the ice-holes, and the heated vapours on the higher parts of the mountains, proceeded from within, and not from without.

The people of the district assured Professor Pleischl that the hotter the summer, the more ice is formed; and that it disappears when the nights become long and the days short. Dr. Weiss, for six years head of the Gymnasium of Leitmeritz, stated that when one of the holes was emptied of ice in the summer, it filled again in a few days. The explanation given by the Professor of this phenomenon is, that the blocks of basalt, that being an excellent conductor of heat, pass so much warmth through to their under surfaces--which form the roof of small chambers filled with a spongy mass of decaying leaves--that the rapid evaporation thereby caused produces the cold air and the ice. He omits to explain why there should be anything exceptional in the winter phenomenon of the crevices among the stones.

There are two other places in Bohemia where ice is found in summer. One is on the Steinberg, in the county of Konaged;[[132]] it is a small basin, surrounded by trees, where, in the middle of summer, lumps of ice are found under basaltic débris. This ice is only formed, according to Sommer, in the hottest part of the year. The other is on the Zinkenstein, one of the highest points of the Vierzehnberg, in the circle of Leitmeritz. It is described by Sommer[[133]] as a cleft, five fathoms deep, in the basaltic rock, where ice is found in the hottest seasons. Professor Pleischl put this assertion to the test by visiting the spot in the end of August, when he found no signs of ice.

Another writer in Poggendorff[[134]] describes a somewhat similar appearance on the Saalberg. Here ice is found on the surface from June to the middle of August; and that, too, with a west exposure and in moderate shade. In July, the ice was so abundant that it could be seen from some distance: it was half a foot thick, and yielded neither to sun nor rain. In the middle of August there was no ice on the surface; but when the loose débris was removed, the most beautiful ice appeared, and at a little depth all was frozen as hard as if it had been the depth of winter.[[135]] The people who work in the neighbourhood declare that the place remains open, and free from ice or snow, in the greatest cold, and that no ice begins to form till the month of June. When the writer of the account in Poggendorff visited the ice-hole, the peasants were in the habit of carrying large masses of ice down to their houses, through a temperature of 81° F.

Reich[[136]] gives a detailed and valuable account of the prevalence of subterranean ice on the Sauberg, a hill which forms one side of a ravine near Ehrenfriedersdorf. The surface is about 2,000 feet above the sea, and its mean temperature, as determined by many careful observations, about 45° F. There are several tin-mines in this district, and the extended observations made by the authorities establish the curious fact that the mean temperature is considerably lower beneath than at the surface. For instance, in the S. Christoph pit, it is found that the mean temperature, at 15 fathoms below the surface, is only slightly above 42° F.; while at the Morgenröther cross-cut the same mean temperature is found at a depth of 46 fathoms. The annual change of temperature is very small in these mines, and the maximum and minimum are reached very late; so that, if a point could be found with a mean temperature of 32° F., ice would increase there up to June or even July, and then diminish until December or January; in which case the phenomenon so often said to be observed in connection with subterranean ice--the melting in winter and forming in summer--would really be presented.

The ice on the Sauberg is frequently found to commence at a depth of 3 or 4 fathoms, and in the years 1811 and 1813 it extended to 24 fathoms below the surface: this depth, however, was exceptionally great, and as a rule the limit is reached at about 14 fathoms.[[137]] The ice is usually not very firm, and can be broken by stout blows with a stick; but between the years 1790 and 1800, when it was found at a depth of from 3 to 9 fathoms, it was so hard that blasting became necessary, and at that time the miners were with difficulty protected from the effects of the severe cold. The greatest quantity of ice is found in the interstices of the rubbish-beds of old workings, and here it assumes a crystalline form, the rocks being covered with a 'fibrous' structure, arranged perpendicularly to their surface.

Reich reports the universal presence of cold currents of air in these shafts and mines, and, in consequence, takes the opportunity of contradicting a statement in Horner's Physik. Wörterbuch,[[138]] that the absence of all current of air is essential to the formation of subterranean ice. He quotes the case of the cheese-caves of Roquefort as a further confirmation of his own observations with regard to the connection between ice in caves and cold currents of air; but of the many accounts which I have met with of the curious caves referred to, both in books and from the lips of those who have visited them, not one has made any mention of ice.[[139]] He states, too, that when the strength of the current is diminished, its temperature is increased; a fact which all observations of the cold currents in caves, especially those made with so much care by M. Saussure, abundantly establish.

In the way of explanation, Reich mentions the possibility of rocks of peculiar formation possessing actually a low degree of temperature;[[140]] but he rejects this suggestion, preferring to believe that in some cases the cold resulting from evaporation is the cause of ice, and in others the greater specific gravity of cold as compared with warmer air.

In the Bulletin des Sciences Naturelles,[[141]] it is stated that a large quantity of ice is found in one of the recesses of the grotto of Antiparos--a fact which I have not seen mentioned elsewhere. After penetrating a long way through difficult fissures, a square chamber is at length reached, measuring 300 feet in length and breadth, with a height of about 80 feet. The walls and roof and floor are beautifully decorated with ice, and reflect all the colours of the rainbow. There are groups of pyramidal and round columns, and in some parts of the cave screens or curtains of ice 10 or 12 feet broad hang down to the floor.