Fig. 45.—Section at right angles to the cliff through the westerly chalk bluff at Trimingham, Norfolk, showing the manner in which chalk masses are incorporated into the till (Clement Reid). Scale, 250 fret to an inch. A. Level of low-water spring-tides; B. Chalk, with sandy bed at *; C. Forest-bed series, etc., seen in the cliffs a few yards north and south of this point; D. Cromer till, stiff lead-colored boulder-clay; E. Fine, chalky sands, much false-bedded; F. Contorted drift, brown bouldery-clay with marked bedding- or fluxion-structure; G. The bed, above the white line were seen and measured by more snow and measured by Mr. Reid; * Chalk seen in situ on beach.
“If the ice-sheet, instead of flowing over the beds, happens to plough into them or abut against them, it would bend up a boss of chalk, as at Beeston. A more extensive disturbance, like that at Trimingham drives before it a long ridge of the bads, and nips up the chalk, till, like a cloth creased by the sliding of a heavy book, it is folded into an inverted anticlinal. A slight increase of pressure, and the third stage is reached—the top of the anticlinal being entirely sheared off, the chalk boulder driven up an incline, and forced into the overlying boulder-clays.” (Clement Reid.)
“Attempts have been made to correlate the deposits over the whole area, but with very indifferent success. A consideration of the consequences of the invasion of the country by an ice-stream from the northeast will prepare us for any conceivable complication of the deposits.
“The main movement was against the drainage of the country, so that the ice-front must have been frequently in water. There would be aqueous deposition and erosion; the kneading up of morainic matter into ground-moraine; irregularities of distribution and deposition due to ice floating in an extra-morainic lake; flood-washes at different points of overflow; and other confusing causes, which make it rather matter for surprise that any order whatever is traceable.
“I now turn to the valley of the Trent. We find that it occupies such a position that it would be exposed, successively or simultaneously, to the action of ice-streams of most diverse origin. I have shown that the area to the westward of Lichfield was invaded at one period by a Welsh glacier, and at a subsequent one by the Irish Sea Glacier, and both of these streams entered the valley of the Trent or some of its affluents. From the eastward, again, the great North Sea Glacier encroached in like manner, carrying the Great Chalky Boulder-Clay even into the drainage area of the westward-flowing rivers near Coventry.
“The glacial geology of the Trent Valley from Burton to Nottingham has been ably dealt with by Mr. R. M. Deeley,[BT] who recognises a succession which may be generalised as follows: (1.) A lower series containing rocks derived from the Pennine chain; (2.) A middle series containing rocks from the eastward (chalky boulder-clay, etc.); and (3.) An upper series with Pennine rocks. Mr. Deeley thinks the Pennine débris may have been brought by glaciers flowing down the valleys of the Dove, the Wye, and the Derwent; but, while recognising the importance of the testimony adduced, especially that of the boulders, I am compelled to reserve judgment upon this point until something like moraines or other evidences of local glaciers can be shown in those valleys. In their upper parts there is not a sign of glaciation. Some of the deposits described must have been laid down by land-ice; while the conformation of the country shows that during some stages of glaciation a lake must have existed into which the different elements of the converging glaciers must have projected. This condition will account for the remarkable commingling of boulders observed in some of the deposits. Welsh, Cumbrian, and Scottish rocks occur in the western portion of the Trent Valley. The overflow of the extra-morainic lake would find its way into the valleys of the Avon and Severn, and may be taken to account for the abundance of flints in some of the gravels.
[BT] Quarterly Journal Geological Society, vol. xlii, p. 437.
“The Isle of Man.—This little island in mid-seas constituted in the early stages of the Glacial epoch an independent centre of glaciation, and from some of its valleys ice-streams undoubtedly descended to the sea; but with the growth of the great Irish Sea Glacier the native ice was merged in the invading mass, and at the climax of the period the whole island was completely buried, even to its highest peak (Snae Fell, 2,054 feet), beneath the ice. The effects of this general glaciation are clearly seen in the mantle of unstratified drift material which overspread the hills; in the moutonnée appearance of the entire island; and in the transport of boulders of local rocks. The striations upon rock surfaces show a constancy of direction in agreement with the boulder-transport which can be ascribed to no other agency than a great continuous sheet of such dimensions as to ignore minor hills and valleys.