In the case of Lake Erie, we need suppose no change of level to account for the erosion of its basin, but only that, since the strata in which it is situated were deposited, time enough had elapsed for a great river to cut a gorge extending from the western end of Lake Ontario through to the present bed of Lake Erie, and that here a great enlargement of the valley was occasioned by the existence of deep beds of soft shale which could easily be worn away by a ramifying system of tributary streams. Rivers acting at present relative levels would be amply sufficient to produce the results which are here manifest.

But in the case of Lakes Ontario, Huron, Michigan, and Superior, whose depths descend considerably below the sea-level, we must suppose that they were, in the main, eroded when the continent was so much elevated that their bottoms were brought above tide-level. The depth of Lake Ontario implies the existence of an outlet more than four hundred feet lower than at present, which, of course, could exist only when the general elevation was more than four hundred feet greater than now.

The existence of an outlet at that depth seems to be proved also by the fact that at Syracuse, where numerous wells have been sunk to obtain brine for the manufacture of salt, deposits of sand, gravel, and rolled stones, four hundred and fifty feet thick, are penetrated without reaching rock. Since this lies in the basin of Lake Ontario, it follows that if the basin itself has been produced by river erosion, the land must have been of sufficient height to permit an outlet through a valley, or cañon, of the required depth, and this outlet must now be buried beneath the abundant glacial débris that covers the region.

Professor Newberry, who has studied the vicinity carefully, is of the opinion that there is ample opportunity for such a line of drainage to have extended through the Mohawk Valley to the Hudson River. But, at Little Falls, a spur of the Adirondack Mountains projects into the valley, and the Archæan rocks over which the river runs are so prominent and continuous that some have thought it impossible for the requisite channel to have ever existed there. Extensive deposits of glacial débris, however, are found in the vicinity, especially in places some distance to the north, and in Professor Newberry’s opinion the existence of a buried channel around the obstruction upon the north side is by no means improbable.

The preglacial drainage of Lake Huron has not been determined with any great degree of probability. Professor Spencer formerly supposed that it passed from the southern end of the lake through London, in the western part of Ontario, and reached the Erie basin near Port Stanley, and so augmented the volume of the ancient river which eroded the buried cañon from Lake Erie to Lake Ontario. But he now supposes, though the evidence is by no means demonstrative, that the waters of Lake Huron passed into Lake Ontario by means of a channel extending from Georgian Bay to the vicinity of Toronto.

With a fair degree of probability, the basin of Lake Superior is supposed by Professor Newberry to have been joined to that of Lake Michigan by some passage, now buried, considerably to the west of the Strait of Mackinac, and thence to have had an outlet southward from the vicinity of Chicago directly into the Mississippi River. Of this there is considerable evidence furnished by deeply buried channels which have been penetrated by borings in various places in Kankakee, Livingston, and McLean Counties, Illinois; but the whole area extending from Lake Michigan to the Mississippi is so deeply covered with glacial débris that the surface of the country gives no satisfactory indication of the exact lines of preglacial drainage.

Some of the most remarkable instances of ancient river channels buried by the glacial deposits have been brought to light in southwestern Ohio, where there has been great activity in boring for gas and oil. At St. Paris, Champaign County, for example, in a locality where the surface of the rock near by was known to be not far below the general level, a boring was begun and continued to a depth of more than five hundred feet without reaching rock, or passing out of glacial débris.

Many years ago Professor Newberry collected sufficient facts to show that pretty generally the ancient bed of the Ohio River was as much as 150 feet below that over which it now flows. During a continental elevation the erosion had proceeded to that extent, and then the channel had been silted up during the Glacial period with the abundant material carried down by the streams from the glaciated area. One of the evidences of the preglacial depth of the channel of the Ohio was brought to light at Cincinnati, where “gravel and sand have been found to extend to a depth of over one hundred feet below low-water mark, and the bottom of the trough has not been reached.” In the valley of Mill Creek, also, “in the suburbs of Cincinnati, gravel and sand were penetrated to the depth of 120 feet below the stream before reaching rock.” But from the general appearance of the channel, Professor J. F. James was led to surmise that a rock bottom extended all the way across the present channel of the Ohio, between Price Hill and Ludlow, Ky., a short distance below Cincinnati, which would preclude the possibility of a preglacial outlet at the depth disclosed in that direction. Mr. Charles J. Bates (who was inspector of the masonry for the Cincinnati Southern Railroad while building the bridge across the Ohio at this point) informs me that Mr. James’s surmise is certainly correct, and that his “in all probability” may be displaced by “certainly,” since the bedded rocks supposed by Professor James to extend across the river a few feet below its present bottom were found by the engineers to be in actual existence.

In looking for an outlet for the waters of the upper Ohio which should permit them to flow off at the low level reached in the channel at Cincinnati, Professor James was led to inspect the valley extending up Mill Creek to the north towards Hamilton, where it joins the Great Miami. The importance of Mill Creek Valley is readily seen in the fact that the canal and the railroads have been able to avoid heavy grades by following it from Cincinnati to Hamilton. As a glance at a map will show, it is also practically but a continuation of the northerly course pursued by the Ohio for twenty miles before reaching Cincinnati. This, therefore, was a natural place in which to look beneath the extensive glacial débris for the buried channel of the ancient Ohio, and here in all probability it has been found. The borings which have been made in Milk Creek Valley north of Cincinnati, show that the bedded rock lies certainly thirty-four feet below the low-water mark of the Ohio just below Cincinnati, while at Hamilton, twenty-five miles north of Cincinnati, where the valley of the Great Miami is reached, the bedded rock of the valley lies as much as ninety feet below present low-water mark in the Ohio.

Other indications of the greater depth of the preglacial gorge of the Ohio are abundant. “At the junction of the Anderson with the Ohio, in Indiana, a well was sunk ninety-four feet below the level of the Ohio before rock was found.” At Louisville, Ky., the occurrence of falls in the Ohio seemed at first to discredit the theory in question, but Professor Newberry was able to show that the falls at Louisville are produced by the water’s being now compelled to flow over a rocky point projecting from the north side into the old valley, while to the south there is ample opportunity for an old channel to have passed around this point underneath the city on the south side. The lowlands upon which the city stands are made lands, where glacial débris has filled up the old channel of the Ohio.