An interesting illustration of this principle is to be observed in the continuous valley of the Alleghany and Ohio Rivers. The trough of this valley was reached by the continental glacier at only a few points, the ice barely touching it at Salamanca, N. Y., Franklin, Pa., and Cincinnati, Ohio. But throughout its whole length the ice-front was approximately parallel to the valley, and occupied the head-waters of nearly all its tributaries. Now, wherever tributaries which could be fed by glacial floods, enter the trough of the main stream, they brought down an excessive amount of gravel, and greatly increased the size of the terrace in the trough itself, and from the mouth of each such tributary to that of the next one below there is a gradual decrease in the height of the terrace and in the coarseness of the material.

This law is illustrated with special clearness in Pennsylvania between Franklin and Beaver. Franklin is upon the Alleghany River, at the last point where it was reached directly by the ice. Below this point no tributary reaches it from the glaciated region, and none such reaches the Ohio after its junction with the Alleghany until we come to the mouth of Beaver Creek, about twenty-five miles below Pittsburg.

But at this point the Ohio is joined by a line of drainage which emerges from the glaciated area only ten or twelve miles to the north, and whose branches occupy an exceptionally large glaciated area. Accordingly, there is at Beaver a remarkable increase in the size of the glacial terrace on the Ohio. In the angle down-stream between the Beaver and the Ohio there is an enormous accumulation of granitic pebbles, many of them almost large enough to be called boulders, forming the delta terrace, upon which the city is built and rising to a height of 135 feet above the low-water mark in the Ohio. In striking confirmation of our theory, also, the terrace in the Ohio Valley upon the upper side of Beaver Creek is composed of fine material, largely derived from local rocks and containing but few granitic pebbles.

From the mouth of Beaver Creek, down the Ohio, the terrace is constant (sometimes upon one side of the river and sometimes upon the other), but, according to rule, the material of which it is composed gradually grows finer, and the elevation of the terrace decreases. According to rule, also, there is a notable increase in the height of the terrace below each affluent which enters the river from the glaciated region. This is specially noticeable below Marietta, at the mouth of the Muskingum, whose head-waters drain an extensive portion of the glaciated area. From the mouth of the Little Beaver to this point the tributaries of the Ohio are all small, and none of them rise within the glacial limit. Hence they could contribute nothing of the granitic material which enters so largely into the formation of the river terrace; but below the mouth of the Muskingum the terrace suddenly ascends to a height of nearly one hundred feet above low-water mark.

Again, at the mouth of the Scioto at Portsmouth, there is a marked increase in the size of the terrace, which is readily accounted for by the floods which came down the Scioto Valley from the glaciated region. The next marked increase is at Cincinnati, just below the mouth of the Little Miami, whose whole course lay in the glaciated region, and whose margin is lined by very pronounced terraces. At Cincinnati the upper terrace upon which the city is built is 120 feet above the flood-plain.

Twenty-five miles farther down the river, near Lawrenceburg, these glacial terraces are even more extensive, the valley being there between three and four miles wide, and being nearly filled with gravel deposits to a height of 112 feet above the flood-plain. Below this point the terraces gradually diminish in height, and the material becomes finer and more water-worn, until it merges at last in the flood-plain of the Mississippi. The course of the Wabash River is too long to permit it to add materially to the size of the terraces which characterise the broader valley of the Ohio below the Illinois line.

It is in terraces such as these just described that we find the imbedded relics of man which definitely connect him with the great Ice age. These have now been found in the glacial terraces of the Delaware River at Trenton, N. J.; in similar terraces in the valley of the Tuscarawas River at New Comerstown, and in the valley of the Little Miami at Loveland and Madisonville, in Ohio; on the East Fork of White River, at Medora, Ind.; and still, again, at Little Falls, in the trough of the Mississippi, some distance above Minneapolis, Minn.

I append a list of the points at which various streams from the Atlantic Ocean to the Mississippi River emerge from the glacial boundary, and below which the terraces are specially prominent. Of course, with the retreat of the ice, the formation of the terraces continued northward in the glaciated area to a greater or less distance, according to the extent of the valley or to the length of time during which the drainage was temporarily turned into it. These points of emergence are: In the Delaware Valley, at Belvidere, N. J.; in the Susquehanna, at Beach Haven, Pa.; in the Conewango, at Ackley, Warren County; in Oil Creek, above Titusville: in French Creek, a little above Franklin; in Beaver Creek, at Chewtown, Lawrence County; on the Middle Fork of Little Beaver, near New Lisbon, Ohio; on the east branch of Sandy Creek, at East Rochester, Columbiana County; on the Nimishillin, at Canton, Stark County; on the Tuscarawas, at Bolivar; on Sugar Creek, at Beech City; on the Killbuck, at Millersburg, Holmes County; on the Mohican, near the northeast corner of Knox County; on the Licking River, at Newark; on Jonathan Creek, Perry County; on the Hocking, at Lancaster; on the Scioto, at Hopetown, just above Chillicothe; on Paint Creek, and its various tributaries, between Chillicothe and Bainbridge; and on the Wabash, above New Harmony, Ind.; to which may be added the Ohio River itself, at its junction with the Miami, near Lawrenceburg.

Another class of terraces having most interesting connection with the Glacial period is found in the arid basins west of the Rocky Mountains. Over wide areas in Utah and Nevada the evaporation now just balances the precipitation, and all the streams disappear in shallow bodies of salt water of moderate dimensions, of which Great Salt Lake in Utah, and Mono, Pyramid, and North Carson Lakes in Nevada, are the most familiar examples. These occupy the lowest sinks of enclosed basins of great depth.