10. In medicine, arsenic is used for skin diseases, ague, and as a tonic; externally for cancer and lupus. Liquor arsenicalis B.P., Fowler’s solution, or “ague drops,” is composed of arsenic 80 grains, potass, carbonate 80 grains, water 1 pint, flavoured with lavender. It is a solution of potassium arsenite. Liquor arsenici hydrochloricus is arsenic dissolved in hydrochloric acid, giving arsenic trichloride, of the same strength as liquor arsenicalis. Among unofficial preparations are “Donovan’s Solution of Arsenic,” containing mercuric and arsenious iodides; strength 0·69 grain arsenicum per fluid ounce: “Davidson’s Cancer Remedy” equal parts of arsenic and hemlock (Dr. Paris): “Cancer Paste,” containing 8 per cent. of arsenic, with cinnabar and dragon’s blood: “Hydrophobia Pill,” 1/16 to 1/12 grain arsenic, with 1 grain pepper, an absurd remedy much used in the East Indies. (Blyth’s Pract. Chem., 1879, p. 376.) The pharmacopœial preparations of arsenic acid will be described under arsenic pentoxide.
11. It is given by grooms to horses, to render their coats sleek, and improve their wind, under the name of “condition balls or powders” (strength 2½ to 5 per cent. of arsenic), also for worms, and as a tonic.
12. For destroying the nerves of decayed teeth, about 1/25 grain is placed in the cavity. In the Lancet a case is recorded in which inflammation and caries of the jaw followed this practice, which is a very dangerous one.
13. In the manufacture of some aniline dyes, and in the reduction of indigo, arsenic is often used. Dyed stockings, &c., have caused skin irritation, supposed to be due to arsenic, but more probably owing to the dye itself.
14. Firework preparations commonly contain some compound of As, and therefore give poisonous vapours. “Bengal light” consists of 24 of potass. nitrate, 7 of sulphur, and 2 of realgar (arsenic disulphide). See also Blyth, Prac. Chem., p. 379.
15. Rat Poisons:—No. 1. Arsenic 6 per cent., made into a paste, with equal parts of flour and suet, variously coloured and scented. No. 2. Equal parts of arsenic and carbonate of barium (itself poisonous), coloured with rose pink, and scented with oils of anise and rhodium.[134]
Fly Poisons.—“Fly powder,” a grey mixture of As and As2 O3. “Fly water,” a solution of arsenious acid, or arsenite of soda or potash, of varying strength, sweetened with sugar, treacle, or honey. (Med. Times and Gazette, Sept. 13th, 1851.) Some also contain orpiment (arsenic trisulphide).
16. For cleansing metals, arsenite of soda has been used on account of its strong alkalinity. It is an absurd preparation to use for this purpose, as washing soda or potash would act better. In December, 1857, 340 children were poisoned by water from a boiler that had been “cleaned” by this compound (Taylor on Poisons, 2nd ed., p. 378). In 1863, a man died from drinking beer out of a pot which had been thus cleansed (Taylor, Med. Juris., 1, 273).
17. The well-known “arsenic eating” of Styria has been ridiculed as impossible, but has yet been authenticated on further examination. A Styrian wood-cutter was seen by a medical man to eat a piece of arsenic weighing 4½ grains, and next day another 5½ grains, yet remaining in his usual health. It is also eaten by the natives of Ceylon (Med. Times and Gaz. 1862, p. 454, and 1866, p. 375). Workmen in arsenic factories often become habituated to its influence. See a paper by Roscoe, Mem. of Lit. and Phil. Soc. of Manchester, 1860. I myself can testify to this fact. A student in the College of Science, Dublin, was accustomed to take out of the arsenic bottle little lumps about 3 or 4 grains each and eat them, without apparent ill effect.
18. As a cosmetic, applied externally, it would probably be useless. Unless the skin were abraded, or it remained very long in contact, no absorption, and hence no poisonous effect, would result, but any scratch or wound would be dangerous. (See Christison’s Evidence, case of Madeline Smith, p. 320.) And if in protracted contact with the skin, it will cause symptoms. (Memoirs of Lond. Med. Soc., ii., 397, Amer. J. of Med. Science, July, 1851.)