And if one looks carefully into the matter one will find that even Erasistratus’s reasoning on the subject of nutrition, which he takes up in the second book of his “General Principles,” fails to escape this same difficulty. For, having conceded one premise to the principle that matter tends to fill a vacuum, as we previously showed, he was only able to draw a conclusion in the case of the veins and their contained blood.[211] That is to say, when blood is running away through the stomata of the veins, and is being dispersed, then, since an absolutely empty space cannot result, and the veins cannot collapse (for this was what he overlooked), it was therefore shown to be necessary that the adjoining quantum of fluid should flow in and fill the place of the fluid evacuated. It is in this way that we may suppose the veins to be nourished; they get the benefit of the blood which they contain. But how about the nerves?[212] For they do not also contain blood. One might obviously say that they draw their supply from the veins.[213] But Erasistratus will not have it so. What further contrivance, then, does he suppose? He says that a nerve has within itself veins and arteries, like a rope woven by Nature out of three different strands. By means of this hypothesis he imagined that his theory would escape from the idea of attraction. For if the nerve contain within itself a blood-vessel it will no longer need the adventitious flow of other blood from the real vein lying adjacent; this fictitious vessel, perceptible only in theory,[214] will suffice it for nourishment.
But this, again, is succeeded by another similar difficulty. For this small vessel will nourish itself, but it will not be able to nourish this adjacent simple nerve or artery, unless these possess some innate proclivity for attracting nutriment. For how could the nerve, being simple, attract its nourishment, as do the composite veins, by virtue of the tendency of a vacuum to become refilled? For, although according to Erasistratus, it contains within itself a cavity of sorts, this is not occupied with blood, but with psychic pneuma,[215] and we are required to imagine the nutriment introduced, not into this cavity, but into the vessel containing it, whether it needs merely to be nourished, or to grow as well. How, then, are we to imagine it introduced? For this simple vessel [i.e. nerve] is so small—as are also the other two—that if you prick it at any part with the finest needle you will tear the whole three of them at once. Thus there could never be in it a perceptible space entirely empty. And an emptied space which merely existed in theory could not compel the adjacent fluid to come and fill it.
At this point, again, I should like Erasistratus himself to answer regarding this small elementary nerve, whether it is actually one and definitely continuous, or whether it consists of many small bodies, such as those assumed by Epicurus, Leucippus, and Democritus.[216] For I see that the Erasistrateans are at variance on this subject. Some of them consider it one and continuous, for otherwise, as they say, he would not have called it simple; and some venture to resolve it into yet other elementary bodies. But if it be one and continuous, then what is evacuated from it in the so-called insensible transpiration of the physicians will leave no empty space in it; otherwise it would not be one body but many, separated by empty spaces. But if it consists of many bodies, then we have “escaped by the back door,” as the saying is, to Asclepiades, seeing that we have postulated certain inharmonious elements. Once again, then, we must call Nature “inartistic”; for this necessarily follows the assumption of such elements.
For this reason some of the Erasistrateans seem to me to have done very foolishly in reducing the simple vessels to elements such as these. Yet it makes no difference to me, since the theory of both parties regarding nutrition will be shown to be absurd. For in these minute simple vessels constituting the large perceptible nerves, it is impossible, according to the theory of those who would keep the former continuous, that any “refilling of a vacuum” should take place, since no vacuum can occur in a continuum even if anything does run away; for the parts left come together (as is seen in the case of water) and again become one, taking up the whole space of that which previously separated them. Nor will any “refilling” occur if we accept the argument of the other Erasistrateans, since none of their elements need it. For this principle only holds of things which are perceptible, and not of those which exist merely in theory; this Erasistratus expressly acknowledges, for he states that it is not a vacuum such as this, interspersed in small portions among the corpuscles, that his various treatises deal with, but a vacuum which is clear, perceptible, complete in itself, large in size, evident, or however else one cares to term it (for, what Erasistratus himself says is, that “there cannot be a perceptible space which is entirely empty”; while I, for my part, being abundantly equipped with terms which are equally elucidatory, at least in relation to the present topic of discussion, have added them as well).
Thus it seems to me better that we also should help the Erasistrateans with some contribution, since we are on the subject, and should advise those who reduce the vessel called primary and simple by Erasistratus into other elementary bodies to give up their opinion; for not only do they gain nothing by it, but they are also at variance with Erasistratus in this matter. That they gain nothing by it has been clearly demonstrated; for this hypothesis could not escape the difficulty regarding nutrition. And it also seems perfectly evident to me that this hypothesis is not in consonance with the view of Erasistratus, when it declares that what he calls simple and primary is composite, and when it destroys the principle of Nature’s artistic skill.[217] For, if we do not grant a certain unity of substance[218] to these simple structures as well, and if we arrive eventually at inharmonious and indivisible elements,[219] we shall most assuredly deprive Nature of her artistic skill, as do all the physicians and philosophers who start from this hypothesis. For, according to such a hypothesis, Nature does not precede, but is secondary to the parts of the animal.[220] Now, it is not the province of what comes secondarily, but of what pre-exists, to shape and to construct. Thus we must necessarily suppose that the faculties of Nature, by which she shapes the animal, and makes it grow and receive nourishment, are present from the seed onwards; whereas none of these inharmonious and non-partite corpuscles contains within itself any formative, incremental,[221] nutritive, or, in a word, any artistic power; it is, by hypothesis, unimpressionable and untransformable,[222] whereas, as we have previously shown,[223] none of the processes mentioned takes place without transformation, alteration, and complete intermixture. And, owing to this necessity, those who belong to these sects are unable to follow out the consequences of their supposed elements, and they are all therefore forced to declare Nature devoid of art. It is not from us, however, that the Erasistrateans should have learnt this, but from those very philosophers who lay most stress on a preliminary investigation into the elements of all existing things.
Now, one can hardly be right in supposing that Erasistratus could reach such a pitch of foolishness as to be incapable of recognizing the logical consequences of this theory, and that, while assuming Nature to be artistically creative, he would at the same time break up substance into insensible, inharmonious, and untransformable elements. If, however, he will grant that there occurs in the elements a process of alteration and transformation, and that there exists in them unity and continuity, then that simple vessel of his (as he himself names it) will turn out to be single and uncompounded. And the simple vein will receive nourishment from itself, and the nerve and artery from the vein. How, and in what way? For, when we were at this point before, we drew attention to the disagreement among the Erasistrateans,[224] and we showed that the nutrition of these simple vessels was impracticable according to the teachings of both parties, although we did not hesitate to adjudicate in their quarrel and to do Erasistratus the honour of placing him in the better sect.[225]
Let our argument, then, be transferred again to the doctrine which assumes this elementary nerve[226] to be a single, simple, and entirely unified structure, and let us consider how it is to be nourished; for what is discovered here will at once be found to be common also to the school of Hippocrates.
It seems to me that our enquiry can be most rigorously pursued in subjects who are suffering from illness and have become very emaciated, since in these people all parts of the body are obviously atrophied and thin, and in need of additional substance and feeding-up; for the same reason the ordinary perceptible nerve, regarding which we originally began this discussion, has become thin, and requires nourishment. Now, this contains within itself various parts, namely, a great many of these primary, invisible, minute nerves, a few simple arteries, and similarly also veins. Thus, all its elementary nerves have themselves also obviously become emaciated; for, if they had not, neither would the nerve as a whole; and of course, in such a case, the whole nerve cannot require nourishment without each of these requiring it too. Now, if on the one hand they stand in need of feeding-up, and if on the other the principle of the refilling of a vacuum[227] can give them no help—both by reason of the difficulties previously mentioned and the actual thinness, as I shall show—we must then seek another cause for nutrition.
How is it, then, that the tendency of a vacuum to become refilled is unable to afford nourishment to one in such a condition? Because its rule is that only so much of the contiguous matter should succeed as has flowed away. Now this is sufficient for nourishment in the case of those who are in good condition, for, in them, what is presented[228] must be equal to what has flowed away. But in the case of those who are very emaciated and who need a great restoration of nutrition, unless what was presented were many times greater than what has been emptied out, they would never be able to regain their original habit. It is clear, therefore, that these parts will have to exert a greater amount of attraction, in so far as their requirements are greater. And I fail to understand how Erasistratus does not perceive that here again he is putting the cart before the horse. Because, in the case of the sick, there must be a large amount of presentation[228] in order to feed them up, he argues that the factor of “refilling”[227] must play an equally large part. And how could much presentation take place if it were not preceded by an abundant delivery[229] of nutriment? And if he calls the conveyance of food through the veins delivery, and its assumption by each of these simple and visible nerves and arteries not delivery but distribution,[230] as some people have thought fit to name it, and then ascribes conveyance through the veins to the principle of vacuum-refilling alone, let him explain to us the assumption of food by the hypothetical elements.[231] For it has been shown that at least in relation to these there is no question of the refilling of a vacuum being in operation, and especially where the parts are very attenuated. It is worth while listening to what Erasistratus says about these cases in the second book of his “General Principles”: “In the ultimate simple [vessels], which are thin and narrow, presentation takes place from the adjacent vessels, the nutriment being attracted through the sides of the vessels and deposited in the empty spaces left by the matter which has been carried away.” Now, in this statement firstly I admit and accept the words “through the sides.” For, if the simple nerve were actually to take in the food through its mouth, it could not distribute it through its whole substance; for the mouth is dedicated to the psychic pneuma.[232] It can, however, take it in through its sides from the adjacent simple vein. Secondly, I also accept in Erasistratus’s statement the expression which precedes “through the sides.” What does this say? “The nutriment being attracted through the sides of the vessels.” Now I, too, agree that it is attracted, but it has been previously shown that this is not through the tendency of evacuated matter to be replaced.