In the next following section of the orbit the planet rotates through another right angle, but, owing to increased distance from the sun, the motion in the orbit now becomes slower until, when the planet arrives at aphelion, C, the angular difference disappears and the cross is once more just under the sun. On returning from aphelion to perihelion the same phenomena recur in reverse order and the line between day and night on the planet first shifts westward, attaining its limit in that respect at D, and then, at perihelion, returns to its original position.

Now, if we could stand on the sunward hemisphere of Mercury what, to our eyes, would be the effect of this shifting of the sun's position with regard to a fixed point on the planet's surface? Manifestly it would cause the sun to describe a great arc in the sky, swinging to and fro, in an east and west line, like a pendulum bob, the angular extent of the swing being a little more than forty-seven degrees, and the time required for the sun to pass from its extreme eastern to its extreme western position and back again being eighty-eight days. But, owing to the eccentricity of the orbit, the sun swings much faster toward the east than toward the west, the eastward motion occupying about thirty-seven days and the westward motion about fifty-one days.

The Regions of Perpetual Day, Perpetual Night, and Alternate Day and Night on Mercury. In the Left-Hand View the Observer looks at the Planet in the Plane of its Equator; in the Right-Hand View he looks down on its North Pole..

Another effect of the libratory motion of the sun as seen from Mercury is represented in the next figure, where we have a view of the planet showing both the day and the night hemisphere, and where we see that between the two there is a region upon which the sun rises and sets once every eighty-eight days. There are, in reality, two of these lune-shaped regions, one at the east and the other at the west, each between 1,200 and 1,300 miles broad at the equator. At the sunward edge of these regions, once in eighty-eight days, or once in a Mercurial year, the sun rises to an elevation of forty-seven degrees, and then descends again straight to the horizon from which it rose; at the nightward edge, once in eighty-eight days, the sun peeps above the horizon and quickly sinks from sight again. The result is that, neglecting the effects of atmospheric refraction, which would tend to expand the borders of the domain of sunlight, about one quarter of the entire surface of Mercury is, with regard to day and night, in a condition resembling that of our polar regions, where there is but one day and one night in the course of a year—and on Mercury a year is eighty-eight days. One half of the remaining three quarters of the planet's surface is bathed in perpetual sunshine and the other half is a region of eternal night.

And now again, what of life in such a world as that? On the night side, where no sunshine ever penetrates, the temperature must be extremely low, hardly greater than the fearful cold of open space, unless modifying influences beyond our ken exist. It is certain that if life flourishes there, it must be in such forms as can endure continual darkness and excessive cold. Some heat would be carried around by atmospheric circulation from the sunward side, but not enough, it would seem, to keep water from being perpetually frozen, or the ground from being baked with unrelaxing frost. It is for the imagination to picture underground dwellings, artificial sources of heat, and living forms suited to unearthlike environment.

What would be the mental effects of perpetual night upon a race of intelligent creatures doomed to that condition? Perhaps not quite so grievous as we are apt to think. The constellations in all their splendor would circle before their eyes with the revolution of their planet about the sun, and with the exception of the sun itself—which they could see by making a journey to the opposite hemisphere—all the members of the solar system would pass in succession through their mid-heaven, and two of them would present themselves with a magnificence of planetary display unknown on the earth. Venus, when in opposition under the most favorable circumstances, is scarcely more than 24,000,000 miles from Mercury, and, showing herself at such times with a fully illuminated disk—as, owing to her position within the orbit of the earth, she never can do when at her least distance from us—she must be a phenomenon of unparalleled beauty, at least four times brighter than we ever see her, and capable, of course, of casting a strong shadow.

The earth, also, is a splendid star in the midnight sky of Mercury, and the moon may be visible to the naked eye as a little attendant circling about its brilliant master. The outer planets are slightly less conspicuous than they are to us, owing to increase of distance.

The revolution of the heavens as seen from the night side of Mercury is quite different in period from that which we are accustomed to, although the apparent motion is in the same direction, viz., from east to west. The same constellations remain above the horizon for weeks at a time, slowly moving westward, with the planets drifting yet more slowly, but at different rates, among them; the nearer planets, Venus and the earth, showing the most decided tendency to loiter behind the stars.