Around each of its poles appears a circular white patch, which visibly expands when winter prevails upon it, and rapidly contracts, sometimes almost completely disappearing, under a summer sun. From the time of Sir William Herschel the almost universal belief among astronomers has been that these gleaming polar patches on Mars are composed of snow and ice, like the similar glacial caps of the earth, and no one can look at them with a telescope and not feel the liveliest interest in the planet to which they belong, for they impart to it an appearance of likeness to our globe which at first glance is all but irresistible.

To watch one of them apparently melting, becoming perceptibly smaller week after week, while the general surface of the corresponding hemisphere of the planet deepens in color, and displays a constantly increasing wealth of details as summer advances across it, is an experience of the most memorable kind, whose effect upon the mind of the observer is indescribable.

Early in the history of the telescope it became known that, in addition to the polar caps, Mars presented a number of distinct surface features, and gradually, as instruments increased in power and observers in skill, charts of the planet were produced showing a surface diversified somewhat in the manner that characterizes the face of the earth, although the permanent forms do not closely resemble those of our planet.

Two principal colors exist on the disk of Mars—dark, bluish gray or greenish gray, characterizing areas which have generally been regarded as seas, and light yellowish red, overspreading broad regions looked upon as continents. It was early observed that if the dark regions really are seas, the proportion of water to land upon Mars is much smaller than upon the earth.

For two especial reasons Mars has generally been regarded as an older or more advanced planet than the earth. The first reason is that, accepting Laplace's theory of the origin of the planetary system from a series of rings left off at the periphery of the contracting solar nebula, Mars must have come into existence earlier than the earth, because, being more distant from the center of the system, the ring from which it was formed would have been separated sooner than the terrestrial ring. The second reason is that Mars being smaller and less massive than the earth has run through its developments a cooling globe more rapidly. The bearing of these things upon the problems of life on Mars will be considered hereafter.

And now, once more, Schiaparelli appears as the discoverer of surprising facts about one of the most interesting worlds of the solar system. During the exceptionally favorable opposition of Mars in 1877, when an American astronomer, Asaph Hall, discovered the planet's two minute satellites, and again during the opposition of 1879, the Italian observer caught sight of an astonishing network of narrow dark lines intersecting the so-called continental regions of the planet and crossing one another in every direction. Schiaparelli did not see the little moons that Hall discovered, and Hall did not perceive the enigmatical lines that Schiaparelli detected. Hall had by far the larger and more powerful telescope; Schiaparelli had much the more steady and favorable atmosphere for astronomical observation. Yet these differences in equipment and circumstances do not clearly explain why each observer should have seen what the other did not.

There may be a partial explanation in the fact that an observer having made a remarkable discovery is naturally inclined to confine his attention to it, to the neglect of other things. But it was soon found that Schiaparelli's lines—to which he gave the name "canals," merely on account of their shape and appearance, and without any intention to define their real nature—were excessively difficult telescopic objects. Eight or nine years elapsed before any other observer corroborated Schiaparelli's observations, and notwithstanding the "sensation" which the discovery of the canals produced they were for many years regarded by the majority of astronomers as an illusion.

But they were no illusion, and in 1881 Schiaparelli added to the astonishment created by his original discovery, and furnished additional grounds for skepticism, by announcing that, at certain times, many of the canals geminated, or became double! He continued his observations at each subsequent opposition, adding to the number of the canals observed, and charting them with classical names upon a detailed map of the planet's surface.

At length in 1886 Perrotin, at Nice, detected many of Schiaparelli's canals, and later they were seen by others. In 1888 Schiaparelli greatly extended his observations, and in 1892 and 1894 some of the canals were studied with the 36-inch telescope of the Lick Observatory, and in the last-named year a very elaborate series of observations upon them was made by Percival Lowell and his associates, Prof. William C. Pickering and Mr. A.E. Douglass, at Flagstaff, Arizona. Mr. Lowell's charts of the planet are the most complete yet produced, containing 184 canals to which separate names have been given, besides more than a hundred other markings also designated by individual appellations.

It should not be inferred from the fact that Schiaparelli's discovery in 1877 excited so much surprise and incredulity that no glimpse of the peculiar canal-like markings on Mars had been obtained earlier than that. At least as long ago as 1864 Mr. Dawes, in England, had seen and sketched half a dozen of the larger canals, or at least the broader parts of them, especially where they connect with the dark regions known as seas, but Dawes did not see them in their full extent, did not recognize their peculiar character, and entirely failed to catch sight of the narrower and more numerous ones which constitute the wonderful network discovered by the Italian astronomer. Schiaparelli found no less than sixty canals during his first series of observations in 1877.