Perhaps the most striking fact that becomes conspicuous in making such a model of the Saturnian system is the exceeding thinness of the rings as compared with their enormous extent. They are about 170,000 miles across from outer edge to outer edge, and about 38,000 miles broad from outer edge to inner edge—including the gauze ring presently to be mentioned—yet their thickness probably does not surpass one hundred miles! In fact, the sheet of paper in our imaginary model is several times too thick to represent the true relative thickness of Saturn's rings.

Several narrow gaps in the rings have been detected from time to time, but there is only one such gap that is always clearly to be seen, the one already mentioned, situated about 10,000 miles from the outer edge and about 1,600 miles in width. Inside of this gap the broadest and brightest ring appears, having a width of about 16,500 miles. For some reason this great ring is most brilliant near the gap, and its brightness gradually falls off toward its inner side. At a distance of something less than 20,000 miles from the planet—or perhaps it would be more correct to say above the planet, for the rings hang directly over Saturn's equator—the broad, bright ring merges into a mysterious gauzelike object, also in the form of a ring, which extends to within 9,000 or 10,000 miles of the planet's surface, and therefore itself has a width of say 10,000 miles.

In consequence of the thinness of the rings they completely disappear from the range of vision of small telescopes when, as occurs once in every fifteen years, they are seen exactly edgewise from the earth. In a telescope powerful enough to reveal them when in that situation they resemble a thin, glowing needle run through the ball of the planet. The rings will be in this position in 1907, and again in 1922.

The opacity of the rings is proved by the shadow which they cast upon the ball of the planet. This is particularly manifest at the time when they are edgewise to the earth, for the sun being situated slightly above or below the plane of the rings then throws their shadow across Saturn close to its equator. When they are canted at a considerable angle to our line of sight their shadow is seen on the planet, bordering their outer edge where they cross the ball.

The gauze ring, the detection of which as a faintly luminous phenomenon requires a powerful telescope, can be seen with slighter telescopic power in the form of a light shade projected against the planet at the inner edge of the broad bright ring. The explanation of the existence of this peculiar object depends upon the nature of the entire system, which, instead of being, as the earliest observers thought it, a solid ring or series of concentric rings, is composed of innumerable small bodies, like meteorites, perhaps, in size, circulating independently but in comparatively close juxtaposition to one another about Saturn, and presenting to our eyes, because of their great number and of our enormous distance, the appearance of solid, uniform rings. So a flock of ducks may look from afar like a continuous black line or band, although if we were near them we should perceive that a considerable space separates each individual from his neighbors.

The fact that this is the constitution of Saturn's rings can be confidently stated because it has been mathematically proved that they could not exist if they were either solid or liquid bodies in a continuous form, and because the late Prof. James E. Keeler demonstrated with the spectroscope, by means of the Doppler principle, already explained in the chapter on Venus, that the rings circulate about the planet with varying velocities according to their distance from Saturn's center, exactly as independent satellites would do.

It might be said, then, that Saturn, instead of having nine satellites only, has untold millions of them, traveling in orbits so closely contiguous that they form the appearance of a vast ring.

As to their origin, it may be supposed that they are a relic of a ring of matter left in suspension during the contraction of the globe of Saturn from a nebulous mass, just as the rings from which the various planets are supposed to have been formed were left off during the contraction of the main body of the original solar nebula. Other similar rings originally surrounding Saturn may have become satellites, but the matter composing the existing rings is so close to the planet that it falls within the critical distance known as "Roche's limit," within which, owing to the tidal effect of the planet's attraction, no body so large as a true satellite could exist, and accordingly in the process of formation of the Saturnian system this matter, instead of being aggregated into a single satellite, has remained spread out in the form of a ring, although its substance long ago passed from the vaporous and liquid to the solid form. We have spoken of the rings as being composed of meteorites, but perhaps their component particles may be so small as to answer more closely to the definition of dust. In these rings of dust, or meteorites, disturbances are produced by the attraction of the planet and that of the outer satellites, and it is yet a question whether they are a stable and permanent feature of Saturn, or will, in the course of time, be destroyed.[12]

It has been thought that the gauze ring is variable in brightness. This would tend to show that it is composed of bodies which have been drawn in toward the planet from the principal mass of the rings, and these bodies may end their career by falling upon the planet. This process, indefinitely continued, would result in the total disappearance of the rings—Saturn would finally swallow them, as the old god from whom the planet gets its name is fabled to have swallowed his children.

Near the beginning of this chapter reference was made to the fact that Saturn's rings have been regarded as habitable bodies. That, of course, was before the discovery that they were not solid. Knowing what we now know about them, even Dr. Thomas Dick, the great Scotch popularizer of astronomy in the first half of the nineteenth century, would have been compelled to abandon his theory that Saturn's rings were crowded with inhabitants. At the rate of 280 to the square mile he reckoned that they could easily contain 8,078,102,266,080 people.