The brilliant constellations of Gemini and Taurus tempt us next, but warning clouds are gathering, and we shall do well to house our telescopes and warm our fingers by the winter fire. There will be other bright nights, and the stars are lasting.
CHAPTER III
FROM GEMINI TO LEO AND ROUND ABOUT
"If thou wouldst gaze on starry Charioteer,
And hast heard legends of the wondrous Goat,
Vast looming shalt thou find on the Twins' left,
His form bowed forward."—Poste's Aratus.
The zodiacal constellations of Gemini, Cancer, and Leo, together with their neighbors Auriga, the Lynx, Hydra, Sextans, and Coma Berenices, will furnish an abundance of occupation for our second night at the telescope. We shall begin, using our three-inch glass, with α, the chief star of Gemini ([map No. 4]). This is ordinarily known as Castor. Even an inexperienced eye perceives at once that it is not as bright as its neighbor Pollux, β. Whether this fact is to be regarded as indicating that Castor was brighter than Pollux in 1603, when Bayer attached their Greek letters, is still an unsettled question. Castor may or may not be a variable, but it is, at any rate, one of the most beautiful double stars in the heavens. A power of one hundred is amply sufficient to separate its components, whose magnitudes are about two and three, the distance between them being 6", p. 226°. A slight yet distinct tinge of green, recalling that of the Orion nebula, gives a peculiar appearance to this couple. Green is one of the rarest colors among the stars. Castor belongs to the same general spectroscopic type in which Sirius is found, but its lines of hydrogen are broader than those seen in the spectrum of the Dog Star. There is reason for thinking that it may be surrounded with a more extensive atmosphere of that gaseous metal called hydrogen than any other bright star possesses. There seems to be no doubt that the components of Castor are in revolution around their common center of gravity, although the period is uncertain, varying in different estimates all the way from two hundred and fifty to one thousand years; the longer estimate is probably not far from the truth. There is a tenth-magnitude star, distance 73", p. 164°, which may belong to the same system.
From Castor let us turn to Pollux, at the same time exchanging our three-inch telescope for the four-inch, or, still better, the five-inch. Pollux has five faint companions, of which we may expect to see three, as follows: Tenth magnitude, distance 175", p. 70°; nine and a half magnitude, distance 206", p. 90°, and ninth magnitude, distance 229", p. 75°. Burnham has seen a star of thirteen and a half magnitude, distance 43", p. 275°, and has divided the tenth-magnitude star into two components, only 1.4" apart, the smaller being of the thirteenth magnitude, and situated at the angle 128°. A calculation based on Dr. Elkin's parallax of 0.068" for Pollux shows that that star may be a hundredfold more luminous than the sun, while its nearest companion may be a body smaller than our planet Jupiter, but shining, of course, by its own light. Its distance from Pollux, however, exceeds that of Jupiter from the sun in the ratio of about one hundred and thirty to one.