Two pleasing little doubles are Σ 2101, magnitudes six and nine, distance 4", p. 57°, and Σ 2104, magnitudes six and eight, distance 6", p. 20°. At the northern end of the constellation is 42, a double that requires the light-grasping power of our largest glass. Its magnitudes are six and twelve, distance 20", p. 94°. In ρ we discover another distinctly colored double, both stars being greenish or bluish, with a difference of tone. The magnitudes are four and five and a half, distance 3.7", p. 309°. But the double 95 is yet more remarkable for the colors of its stars. Their magnitudes are five and five and a half, distance 6", p. 262°, colors, according to Webb, "light apple-green and cherry-red." But other observers have noted different hues, one calling them both golden yellow. I think Webb's description is more nearly correct. Σ 2215 is a very close double, requiring larger telescopes than those we are working with. Its magnitudes are six and a half and eight, distance 0.7", p. 300°. It is probably a binary. Σ 2289 is also close, but our five-inch will separate it: magnitudes six and seven, distance 1.2", p. 230°.

Turning to μ, we have to deal with a triple, one of whose stars is at present beyond the reach of our instruments. The magnitudes of the two that we see are four and ten, distance 31", p. 243°. The tenth-magnitude star is a binary of short period (probably less than fifty years), the distance of whose components was 2" in 1859, 1" in 1880, 0.34" in 1889, and 0.54" in 1891, when the position angle was 25°, and rapidly increasing. The distance is still much less than 1".

For a glance at a planetary nebula we may turn with the five-inch to No. 4234. It is very small and faint, only 8" in diameter, and equal in brightness to an eighth-magnitude star. Only close gazing shows that it is not sharply defined like a star, and that it possesses a bluish tint. Its spectrum is gaseous.

The chief attraction of Hercules we have left for the last, the famous star cluster between η and ζ, No. 4230, more commonly known as M 13. On a still evening in the early summer, when the moon is absent and the quiet that the earth enjoys seems an influence descending from the brooding stars, the spectacle of this sun cluster in Hercules, viewed with a telescope of not less than five-inches aperture, captivates the mind of the most uncontemplative observer. With the Lick telescope I have watched it resolve into separate stars to its very center—a scene of marvelous beauty and impressiveness. But smaller instruments reveal only the in-running star streams and the sprinkling of stellar points over the main aggregation, which cause it to sparkle like a cloud of diamond dust transfused with sunbeams. The appearance of flocking together that those uncountable thousands of stars present calls up at once a picture of our lone sun separated from its nearest stellar neighbor by a distance probably a hundred times as great as the entire diameter of the spherical space within which that multitude is congregated. It is true that unless we assume what would seem an unreasonable remoteness for the Hercules cluster, its component stars must be much smaller bodies than the sun; yet even that fact does not diminish the wonder of their swarming. Here the imagination must bear science on its wings, else science can make no progress whatever. It is an easy step from Hercules to Draco. In the conspicuous diamond-shaped figure that serves as a guide-board to the head of the latter, the southernmost star belongs not to Draco but to Hercules. The brightest star in this figure is γ, of magnitude two and a half, with an eleventh-magnitude companion, distant 125", p. 116°. Two stars of magnitude five compose ν, their distance apart being 62", p. 312°. A more interesting double is μ, magnitudes five and five, distance 2.4", p. 158°. Both stars are white, and they present a pretty appearance when the air is steady. They form a binary system of unknown period. Σ 2078 (also called 17 Draconis) is a triple, magnitudes six, six and a half, and six, distances 3.8", p. 116°, and 90", p. 195°. Σ 1984 is an easy double, magnitudes six and a half and eight and a half, distance 6.4", p. 276°. The star η is a very difficult double for even our largest aperture, on account of the faintness of one of its components. The magnitudes are two and a half and ten, distance 4.7", p. 140°. Its near neighbor, Σ 2054, may be a binary. Its magnitudes are six and seven, distance 1", p. 0°. In Σ 2323 we have another triple, magnitudes five, eight and a half, and seven, distances 3.6", p. 360°, and 90", p. 22°, colors white, blue, and reddish. A fine double is ε, magnitudes five and eight, distance 3", p. 5°.

The nebula No. 4373 is of a planetary character, and interesting as occupying the pole of the ecliptic. A few years ago Dr. Holden, with the Lick telescope, discovered that it is unique in its form. It consists of a double spiral, drawn out nearly in the line of sight, like the thread of a screw whose axis lies approximately endwise with respect to the observer. There is a central star, and another fainter star is involved in the outer spiral. The form of this object suggests strange ideas as to its origin. But the details mentioned are far beyond the reach of our instruments. We shall only see it as a hazy speck. No. 4415 is another nebula worth glancing at. It is Tuttle's so-called variable nebula.

There are three constellations represented on [map No. 16] to which we shall pay brief visits. First Aquila demands attention. Its doubles may be summarized as follows: 11, magnitudes five and nine, distance 17.4", p. 252°; π, magnitudes six and seven, distance 1.6", p. 122°; 23, magnitudes six and ten, distance 3.4", p. 12°—requires the five-inch and good seeing; 57, magnitudes five and six, distance 36", p. 170°; Σ 2654, magnitudes six and eight, distance 12", p. 234°; Σ 2644, magnitudes six and seven, distance 3.6", p. 208°.

The star η is an interesting variable between magnitudes three and a half and 4.7; period, seven days, four hours, fourteen minutes. The small red variable R changes from magnitude six to magnitude seven and a half and back again in a period of three hundred and fifty-one days.