In consequence of the great comparative mass of its dark companion, Algol itself moves in an orbit around their common center with a velocity quite sufficient to be detected by the shifting of the lines in its spectrum. By means of data thus obtained the mass, size, and distance apart of Algol and its singular comrade have been inferred. The diameter of Algol is believed to be about 1,125,000 miles, that of the dark body about 840,000 miles, and the mean distance from center to center 3,230,000 miles. The density of both the light and the dark star is slight compared with that of the sun, so that their combined mass is only two thirds as great as the sun's.

Mention has been made of a slight irregularity in Algol's period of variation. Basing his calculations upon this inequality, Dr. Chandler has put forward the hypothesis that there is another invisible body connected with Algol, and situated at a distance from it of about 1,800,000,000 miles, and that around this body, which is far more massive than the others, Algol and its companions revolve in a period of one hundred and thirty years! Dr. Chandler has earned the right to have his hypotheses regarded with respect, even when they are as extraordinary as that which has just been described. It needs no indulgence of the imagination to lend interest to Algol; the simple facts are sufficient. How did that bright star fall in with its black neighbors? Or were they created together?

Passing to the region covered by [map No. 25], our eyes are caught by the curious figure, formed by the five brightest stars of the constellation Cassiopeia, somewhat resembling the letter W. Like Perseus, this is a rich constellation, both in star clusters and double stars. Among the latter we select as our first example σ, in which we find a combination of color that is at once very unusual and very striking—green and blue. The magnitudes are five and seven, distance 3", p. 324°. Another beautiful colored double is η, whose magnitudes are four and seven and a half, distance 5", p. 200°, colors white and purple. This is one of the comparatively small number of stars the measure of whose distance has been attempted, and a keen sense of the uncertainty of such measures is conveyed by the fact that authorities of apparently equal weight place η Cassiopeiæ at such discordant distances as 124,000,000,000,000 miles, 70,000,000,000,000 miles, and 42,000,000,000,000 miles. It will be observed that the difference between the greatest and the least of these estimates is about double the entire distance given by the latter. The same thing is practically true of the various attempts to ascertain the distance of the other stars which have a perceptible parallax, even those which are evidently the nearest. In some cases the later measures increase the distance, in other cases they diminish it; in no case is there anything like a complete accord. Yet of course we are not to infer that it is hopeless to learn anything about the distances of the stars. With all their uncertainties and disagreements the few parallaxes we possess have laid a good foundation for a knowledge of the dimensions of at least the nearer parts of the universe.

We find an interesting triple in ψ, the magnitudes of the larger components being four and a half and eight and a half, distance 30". The smaller star has a nine-and-a-half-magnitude companion, distance 3". A more beautiful triple is ι, magnitudes four, seven, and eight, distances 2", p. 256°, and 7.5", p. 112°. Cassiopeia contains many star clusters, three of which are indicated in the [map]. Of these 392 is perhaps the most interesting, as it includes stars of many magnitudes, among which are a red one of the eighth magnitude, and a ninth-magnitude double whose components are 8" apart. Not far from the star κ we find the spot where the most brilliant temporary star on record made its appearance on November 11, 1572. Tycho Brahe studied this phenomenon during the entire period of its visibility, which lasted until March, 1574. It burst out suddenly with overpowering splendor, far outshining every fixed star, and even equaling Venus at her brightest. In a very short time it began to fade, regularly diminishing in brightness, and at the same time undergoing changes of color, ending in red, until it disappeared. It has never been seen since, and the suspicion once entertained that it was a variable with a period considerably exceeding three hundred years has not been confirmed. There is a tenth-magnitude star near the place given by Tycho as that occupied by the stranger. Many other faint stars are scattered about, however, and Tycho's measures were not sufficiently exact to enable us to identify the precise position of his star. If the phenomenon was due to a collision, no reappearance of the star is to be expected.

Camelopardalus is a very inconspicuous constellation, yet it furnishes considerable occupation for the telescope. Σ 390, of magnitude five, has a companion of magnitude nine and a half, distance 15", 160°. Σ 385, also of the fifth magnitude, has a ninth-magnitude companion, distance only 2.4", p. 160°. According to some observers, the larger star is yellow and the smaller white. The star 1 is a very pretty double, magnitudes both six, distance 10.4". Its neighbor 2 of magnitude six has an eighth-magnitude companion, distance 1.7", p. 278°. The star 7 of magnitude five is also double, the companion of magnitude eight being distant only 1.2". A glance at star cluster 940, which shows a slight central condensation, completes our work in Camelopardalus, and we turn to Ursa Major, represented in [map No. 26]. Here there are many interesting doubles and triples. Beginning with ι we find at once occupation for our largest glass. The magnitudes are three and ten, distance 10", p. 357°. In the double star 23 the magnitudes are four and nine, distance 23", p. 272°. A more pleasing object is σ2, a greenish fifth-magnitude star which has an eighth-magnitude companion, distance 2.6", p. 245°. A good double for our four-inch glass is ξ, whose magnitudes are four and five, distance 1.87", p. 183°. This is a binary with a period of revolution of about sixty years, and is interesting as the first binary star whose orbit was determined. Savary calculated it in 1828. Near by is ν, a difficult double, magnitudes four and ten and a half, distance 7", p. 147°. In 57 we find again an easy double magnitudes six and eight, distance 5.5", p. 4°. Another similar double is 65, magnitudes six and eight, distance 3.9", p. 38°. A third star, magnitude seven, is seen at a distance of 114" from the primary.

We come now to Ursa Major's principal attraction ζ, frequently called Mizar. The naked eye perceives near it a smaller star, named Alcor. With the three-inch glass and a medium power we divide Mizar into two bright stars brilliantly contrasted in color, the larger being white and the smaller blue-green. Beside Alcor, several fainter stars are seen scattered over the field of view, and, taken all in all, there are very few equally beautiful sights in the starry heavens. The magnitudes of the double are three and four, distance 14.5", p. 148°. The large star is again double, although no telescope has been able to show it so, its duplicity being revealed, like that of β Aurigæ, by the periodical splitting of the lines in its spectrum.

Ursa Major contains several nebulæ which may be glimpsed with telescopes of moderate dimensions. An interesting pair of these objects, both of which are included in one field of view, is formed by 1949 and 1950. The first named is the brighter of the two, its nucleus resembling a faint star. The nebula 2343 presents itself to us in the form of a faint, hazy star, but with large telescopes its appearance is very singular. According to a picture made by Lord Rosse, it bears no little resemblance to a skull, there being two symmetrically placed holes in it, each of which contains a star.