Saturn seen with a Five-Inch Telescope.

Saturn ranks next to Jupiter in attractiveness for the observer with a telescope. The rings are almost as mystifying to-day as they were in the time of Herschel. There is probably no single telescopic view that can compare in the power to excite wonder with that of Saturn when the ring system is not so widely opened but that both poles of the planet project beyond it. One returns to it again and again with unflagging interest, and the beauty of the spectacle quite matches its singularity. When Saturn is in view the owner of a telescope may become a recruiting officer for astronomy by simply inviting his friends to gaze at the wonderful planet. The silvery color of the ball, delicately chased with half-visible shadings, merging one into another from the bright equatorial band to the bluish polar caps; the grand arch of the rings, sweeping across the planet with a perceptible edging of shadow; their sudden disappearance close to the margin of the ball, where they go behind it and fall straightway into night; the manifest contrast of brightness, if not of color, between the two principal rings; the fine curve of the black line marking the 1,600-mile gap between their edges—these are some of the elements of a picture that can never fade from the memory of any one who has once beheld it in its full glory.

Saturn's moons are by no means so interesting to watch as are those of Jupiter. Even the effect of their surprising number (raised to nine by Professor Pickering's discovery in 1899 of a new one which is almost at the limit of visibility, and was found only with the aid of photography) is lost, because most of them are too faint to be seen with ordinary telescopes, or, if seen, to make any notable impression upon the eye. The two largest—Titan and Japetus—are easily found, and Titan is conspicuous, but they give none of that sense of companionship and obedience to a central authority which strikes even the careless observer of Jupiter's system. This is owing partly to their more deliberate movements and partly to the inclination of the plane of their orbits, which seldom lies edgewise toward the earth.

Polar View of Saturn's System.
The orbits of the five nearest satellites are shown. The dotted line outside the rings shows Roche's limit.

But the charm of the peerless rings is abiding, and the interest of the spectator is heightened by recalling what science has recently established as to their composition. It is marvelous to think, while looking upon their broad, level surfaces—as smooth, apparently, as polished steel, though thirty thousand miles across—that they are in reality vast circling currents of meteoritic particles or dust, through which run immense waves, condensation and rarefaction succeeding one another as in the undulations of sound. Yet, with all their inferential tumult, they may actually be as soundless as the depths of interstellar space, for Struve has shown that those spectacular rings possess no appreciable mass, and, viewed from Saturn itself, their (to us) gorgeous seeming bow may appear only as a wreath of shimmering vapor spanning the sky and paled by the rivalry of the brighter stars.

In view of the theory of tidal action disrupting a satellite within a critical distance from the center of its primary, the thoughtful observer of Saturn will find himself wondering what may have been the origin of the rings. The critical distance referred to, and which is known as Roche's limit, lies, according to the most trustworthy estimates, just outside the outermost edge of the rings. It follows that if the matter composing the rings were collected into a single body that body would inevitably be torn to pieces and scattered into rings; and so, too, if instead of one there were several or many bodies of considerable size occupying the place of the rings, all of these bodies would be disrupted and scattered. If one of the present moons of Saturn—for instance, Mimas, the innermost hitherto discovered—should wander within the magic circle of Roche's limit it would suffer a similar fate, and its particles would be disseminated among the rings. One can hardly help wondering whether the rings have originated from the demolition of satellites—Saturn devouring his children, as the ancient myths represent, and encircling himself, amid the fury of destruction, with the dust of his disintegrated victims. At any rate, the amateur student of Saturn will find in the revelations of his telescope the inspirations of poetry as well as those of science, and the bent of his mind will determine which he shall follow.

Professor Pickering's discovery of a ninth satellite of Saturn, situated at the great distance of nearly eight million miles from the planet, serves to call attention to the vastness of the "sphere of activity" over which the ringed planet reigns. Surprising as the distance of the new satellite appears when compared with that of our moon, it is yet far from the limit where Saturn's control ceases and that of the sun becomes predominant. That limit, according to Prof. Asaph Hall's calculation, is nearly 30,000,000 miles from Saturn's center, while if our moon were removed to a distance a little exceeding 500,000 miles the earth would be in danger of losing its satellite through the elopement of Artemis with Apollo.

Although, as already remarked, the satellites of Saturn are not especially interesting to the amateur telescopist, yet it may be well to mention that, in addition to Titan and Japetus, the satellite named Rhea, the fifth in order of distance from the planet, is not a difficult object for a three-or four-inch telescope, and two others considerably fainter than Rhea—Dione (the fourth) and Tethys (the third)—may be seen in favorable circumstances. The others—Mimas (the first), Enceladus (the second), and Hyperion (the seventh)—are beyond the reach of all but large telescopes. The ninth satellite, which has received the name of Phœbe, is much fainter than any of the others, its stellar magnitude being reckoned by its discoverer at about 15.5.